
Achieving Accuracy and Correctness in
Parametric Frequentist Inference

G. Alastair Young

Department of Mathematics
Imperial College London

Tutorial Session, ERCIM 2013, London, December 2013



Acknowledgements: Tom DiCiccio (Cornell), Todd Kuffner
(Washington University in St. Louis).



Overview

Concerned with procedures of likelihood-based frequentist
parametric inference. Omnibus methodology, no explicit optimality
requirements imposed.

BUT, among key desiderata of such inference are high accuracy
and inferential correctness:

I Low error (e.g. high levels of coverage accuracy of CIs),
particularly with small sample sizes n;

I Inferential correctness, in relation to key principles of
inference, especially those involving appropriate conditioning
and parameterization invariance.
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likelihood-based quantities using ‘small sample asymptotics’;

I Simulation-based (‘bootstrap’) methods.
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I Discuss relationships between analytic and bootstrap
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I Special consideration to high-dimensional nuisance parameter
problems;

I Discuss computational issues [computational intensiveness
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Structure of Tutorial

I Background, key ideas.

I Detailed theoretical analysis.

I Further illustrations.



I: Background, key ideas



The inferential problem

Let Y = {Y1, . . . ,Yn} be random sample from underlying
distribution F (y ; θ), indexed by d-dimensional parameter
θ = (θ1, . . . , θd) = (ψ, φ), ψ p-dimensional interest parameter, φ
q-dimensional nuisance parameter, p + q = d . May have φ
high-dimensional.

Wish to test H0 : ψ = ψ0, or (duality) construct confidence set for
ψ.

If p = 1, ψ = θ1, want one-sided inference e.g. test H0 against
(one-sided) alternative ψ > ψ0 or ψ < ψ0, or one-sided confidence
limit.
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“Break the research question of interest into simple components
corresponding to strongly focused and incisive research questions.”

(D.R. Cox, ‘Principles of Statistical Inference’)
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Inference

Let L(θ) ≡ L(θ;Y ) be log-likelihood, θ̂ = (ψ̂, φ̂) the overall MLE
of θ, φ̂ψ the constrained MLE of φ, for fixed value of ψ. Write

θ̃ ≡ θ̃(ψ) = (ψ, φ̂ψ).

Profile log-likelihood function for ψ is M(ψ) = L{θ̃(ψ)}.

Likelihood ratio statistic is W (ψ) = 2{M(ψ̂)−M(ψ)}.

In case of scalar ψ, use signed root likelihood ratio statistic:

R(ψ) = sgn(ψ̂ − ψ)W (ψ)1/2.
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Notation

Arrays and summation are denoted by using the standard
conventions, for which the indices r , s, t, . . . are assumed to range
over 1, . . . , d . Summation over the range is implied for any index
appearing in an expression both as a subscript and as a superscript.

Differentiation is indicated by subscripts, so Lr (θ) = ∂L(θ)/∂θr ,
Lrs(θ) = ∂2L(θ)/∂θr∂θs , etc. Then E{Lr (θ)} = 0; let
λrs = E{Lrs(θ)}, λrst = E{Lrst(θ)}, etc.



The constants λrs , λrst , . . ., are assumed to be of order O(n).
These assumptions are usually satisfied in situations involving
independent observations, structured (e.g. time series) dependent
data problems.

Let λr ,s = E (LrLs), λrs,t = E (LrsLt), etc.

Let (λrs) be the d × d matrix inverse of (λrs), and let η = −1/λ11,
τ rs = ηλ1rλ1s , and νrs = λrs + τ rs . Thus, λrs , τ rs , and νrs are of
order O(n−1), while η is of order O(n).



A comment

Calculation of quantities just defined requires (at most) evaluation
of expectations of log-likelihood derivatives.



Other statistics

Consider, for simplicity, scalar case p = 1. Variants for p > 1 easily
defined.

As alternative ‘pivots’ to R(ψ), could use, for example:

Wald statistic,

TW (ψ) = (ψ̂ − ψ){−λ11(θ̂)}−1/2.

Score statistic,

TS(ψ) = L1{θ̃(ψ)}{λ11(θ̂)}1/2.
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Constructed using expected (inverse) information matrix [λrs ],
evaluated at global MLE. Alternatively: use observed (inverse)
information matrix [Lrs ]; evaluate at constrained MLE θ̃(ψ),.......



Running Example (RE): Inverse Gaussian distribution

Y1, . . . ,Yn IID inverse Gaussian, IG (µ, ψ), with density

f (y ;µ, ψ) =

(
ψ

2πy3

)1/2

exp

(
− ψ

2µ2y
(y − µ)2

)
, y > 0,

interest parameter is shape ψ > 0, mean µ > 0 as nuisance.

First passage time of Brownian motion, widely used to model
phenomena in biosciences/reliability/survival/....
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Density: ψ = 3, µ = 1.0
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Density: ψ = 4, µ = 1.25
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Density: ψ = 5, µ = 1.5
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Density: ψ = 6, µ = 1.75
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MLES are:

ψ̂ = n/V , µ̂ = µ̂ψ = Ȳ ,

V =
n∑

i=1

(Y−1
i − Y

−1
), Ȳ = n−1

n∑
i=1

Yi .

Distribution of ψV is χ2
n−1, distribution of µ̂ is IG (µ, ψ).
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R(ψ) = sgn(ψ̂ − ψ){n(log ψ̂ − 1− logψ + ψ/ψ̂)}1/2,

TW (ψ) =

√
n

2

(
1− ψ

ψ̂

)
,

TS(ψ) =

√
n

2

( ψ̂
ψ
− 1
)



A data sample

Data sample size n = 10, generated with µ = 1, ψ = 2:

0.435, 0.466, 1.624, 0.304, 2.165

0.936, 0.620, 0.595, 0.351, 1.688

Have: ψ̂ = 1.745, µ̂ = 0.918.
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RE: True and estimated densities

0 1 2 3 4 5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

x

de
ns

ity

True
MLE



Comment

Concentrate here on inference based on R, W , for simplicity. Most
results true also for Wald and score statistics.



Parameterization invariance

Principle of parameterization invariance (PPI) important basis for
choosing between different inferential procedures.

If θ and ζ are two alternative parameterizations and P(·) is an
inference procedure, with Cθ and Cζ the conclusions that P(·)
leads to, expressed in the two parameterizations, then the same
conclusion Cζ should be reached by both application of P(·) in the
ζ parameterization and translation into the ζ parameterization of
the conclusion Cθ.
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Nuisance parameter

With nuisance parameters, parameterization invariance is restricted
to mean invariance under interest respecting reparameterization.

Suppose θ = (ψ, φ), with ψ interest parameter and φ nuisance
parameter. An interest respecting reparameterization is of the form
υ = υ(θ) = υ(ψ, φ) with υ = (ϕ, χ), such that

ϕ = ϕ(ψ), χ = χ(ψ, φ).



Nuisance parameter

With nuisance parameters, parameterization invariance is restricted
to mean invariance under interest respecting reparameterization.

Suppose θ = (ψ, φ), with ψ interest parameter and φ nuisance
parameter. An interest respecting reparameterization is of the form
υ = υ(θ) = υ(ψ, φ) with υ = (ϕ, χ), such that

ϕ = ϕ(ψ), χ = χ(ψ, φ).



Implications of PPI

Inference based on W (ψ) (or R(ψ)) does respect PPI.

So does inference based on TS(ψ).

Inference based on TW (ψ) does not.



Implications of PPI

Inference based on W (ψ) (or R(ψ)) does respect PPI.

So does inference based on TS(ψ).

Inference based on TW (ψ) does not.



Implications of PPI

Inference based on W (ψ) (or R(ψ)) does respect PPI.

So does inference based on TS(ψ).

Inference based on TW (ψ) does not.



Adjusted likelihood

Broadly, properties to be discussed hold also for versions of
statistics based on adjusted forms of profile likelihood.

Replace M(ψ) by M̄(ψ) = M(ψ) + B(ψ), where (various
proposals) adjustment function B(ψ) introduced to take account
of nuisance parameter φ.

Intractable likelihood? Composite/pseudo-likelihood. Analysis of
inference for these incomplete, predictable.
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First-order theory

Have W (ψ) distributed as χ2
p, to error of order O(n−1).

Also, R(ψ) distributed as N(0, 1), to error of order O(n−1/2).

Latter true also for TW (ψ) and TS(ψ), and variants.
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Inference: illustration, p = 1

A confidence set of asymptotic coverage 1− α for ψ is

I(Y ) ≡ I1−α(Y ) = {ψ : u(Y , ψ) ≤ 1− α},

with u(Y , ψ) = Φ{R(ψ)}, in terms of the N(0, 1) distribution
function Φ(·). Call u(Y , ψ) the ‘significance function’.

Equivalently, the confidence set is

I(Y ) = {ψ : R(ψ) ≤ Φ−1(1− α)}.

The coverage error of the confidence set is O(n−1/2): first-order
accuracy.



Have that u(Y , ψ) is monotonic in ψ, so confidence set is
semi-infinite interval of form (ψ̂l(Y ),∞). Lower confidence limit.

If two-sided inference is required, an equi-tailed two-sided
confidence interval J (Y ) of nominal coverage 1− α may be
obtained by taking the set difference of two one-sided sets:

J (Y ) ≡ J1−α(Y ) = I1−α/2(Y )\Iα/2(Y ).
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Similar statements about coverage error of confidence sets true for
other asymptotically N(0, 1) pivots.

In case p > 1, confidence set of coverage error O(n−1)
(second-order accuracy) from χ2

p approximation to sampling
distribution of W (ψ).
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RE, data sample: significance functions
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RE, data example: 95% confidence limits

I R(ψ): interval is (0.755,∞).

I TW (ψ): interval is (0.461,∞).

I TS(ψ): interval is (1.005,∞).



Motivations for refinements

I To obtain higher-order repeated sampling accuracy.

I To accommodate appropriate conditioning: multi-parameter
exponential families (conditioning dictated by theory of
optimal tests etc.); ancillary statistic models (relevance, by
conditioning on component of minimal sufficient statistic that
is approximately distribution constant).
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Exponential family context

Suppose that the log-likelihood is of the form

L(θ) = ψs1(Y ) + φs2(Y )− k(ψ, φ)− d(Y ),

so that ψ is a natural parameter of a multi-parameter exponential
family.

The conditional distribution of s1 given s2 depends only on ψ:
conditioning on s2 eliminates the nuisance parameter.

Appropriate inference on ψ is based on the distribution of s1, given
the observed value of s2. This is, in principle, known, since it is
completely specified, once ψ fixed.
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In fact, this conditional inference has unconditional (repeated
sampling) optimality properties of being uniformly most powerful
unbiased etc etc.

In practice, the exact inference may be difficult to construct: the
relevant conditional distribution typically requires awkward analytic
calculations, numerical integrations etc.
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Ancillary statistic context

Fisherian proposition: inference about ψ should be based not on
the original specified model F (y ; θ), but instead on derived model
obtained by conditioning on an ancillary statistic, when this exists.

Suppose minimal sufficient statistic for θ can be written as

(θ̂,A),

with A (approximately) distribution constant.

Then, A is ancillary, and the Conditionality Principle (CP) dictates
that to be relevant inference on ψ should be made conditional on
the observed value a of A. CP automatically respected by Bayesian
inference.
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The third way: objective Bayes

Bayes with prior explicitly specified so (marginal) posterior for ψ
yields confidence limits with correct frequentist interpretation, to
high-order: ‘probability matching prior’.

I conceptually simple;

I typically awkward with high-dimensional nuisance parameter,
as need to find marginal posterior of ψ;

I route not always open, higher-order (conditional) accuracy not
necessarily obtainable.
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Detail

Require prior π(ψ, φ) so that

Prθ{ψ ≤ ψ(1−α)(π,Y )} = 1− α + O(n−r/2),

for r = 2 or 3, each 0 < α < 1.

Here:

I n is sample size;

I ψ(1−α)(π,Y ) is (1− α) quantile of marginal posterior, given
data Y , of ψ, under prior π(ψ, φ);

I Prθ denotes frequentist probability, under repeated sampling
of Y , under parameter θ.
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of Y , under parameter θ.



Detail

Require prior π(ψ, φ) so that

Prθ{ψ ≤ ψ(1−α)(π,Y )} = 1− α + O(n−r/2),

for r = 2 or 3, each 0 < α < 1.

Here:

I n is sample size;

I ψ(1−α)(π,Y ) is (1− α) quantile of marginal posterior, given
data Y , of ψ, under prior π(ψ, φ);

I Prθ denotes frequentist probability, under repeated sampling
of Y , under parameter θ.



Probability matching priors

If condition holds with r = 2, speak of π(ψ, φ) as first-order
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Conditional probability matching

Appropriate frequentist inference to match in full exponential
family or ancillary statistic context is the conditional one.

The requirement should be ‘conditional probability matching’:

Prθ{ψ ≤ ψ(1−α)(π,Y ) | C (Y ) = c} = 1− α + O(n−r/2).

Want the posterior 1− α quantile to match the 1− α conditional
frequentist confidence limit for ψ.
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Analytic methods: the highlights

I Bartlett correction of likelihood ratio statistic W (ψ).

I Analytically modified forms of R(ψ), specifically designed to
offer conditional validity, to high (asymptotic) order, in both
contexts. ‘Barndorff-Nielsen’s R∗’.
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Bartlett correction

Have

Eθ{W (ψ)} = p

(
1 +

b(θ)

n
+ O(n−2)

)
,

so modify W (ψ) to

Wc(ψ) = W (ψ)/{1 + b(ψ, φ̂ψ)/n},

or
W̄c(ψ) = W (ψ)/E(ψ,φ̂ψ)

{W (ψ)}.

Then Wc(ψ) and W̄c(ψ) are distributed as χ2
p, to error of order

O(n−2). Confidence sets constructed by χ2
p approximation have

coverage error O(n−2).
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E(ψ,φ̂ψ)
{W (ψ)} constructed by (bootstrap) simulation. Estimation

of expectation requires smaller MC simulation that estimation of
whole sampling distribution.

Inference by χ2
p approximation to distribution of W̄c(ψ): ‘Empirical

Bartlett correction’.

Could replace χ2
p approximation to sampling distribution of W (ψ)

by bootstrap distribution: sampling distribution under sampling
with parameter fixed as θ = (ψ, φ̂ψ). Confidence set will also have
coverage error O(n−2).
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RE: n = 5, ψ = 2, µ = 1.0, χ2
1 QQ plot, W (ψ)
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RE: n = 5, ψ = 2, µ = 1.0

In inverse Gaussian example, Eθ{W (ψ)} does not depend on
nuisance parameter µ.

Big simulation shows, Eθ{W (ψ)} = 1.4632.
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RE: n = 5, ψ = 2, µ = 1.0, χ2
1 QQ plot, W̄c(ψ)
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Adjusted signed root statistic R∗

Defined by

R∗(ψ) = R(ψ) + log{v(ψ)/R(ψ)}/R(ψ)

Here, in formulation considered, adjustment v(ψ) necessitates:

I explicit specification of ancillary A in ancillary statistic (e.g.
transformation) context;

I potentially awkward analytic calculations, in both
ancillary/exponential family situations.
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Other formulations

Other formulations of v(ψ), due to Fraser and co-workers,
possible: use of ‘tangent exponential model’ avoids need to specify
transformation Y → (θ̂,A).

Still analytically fiddly.
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RE: adjustment function

In inverse Gaussian example,

v(ψ) =

√
nψ

2ψ̂

(
1− ψ

ψ̂

)
.



Sampling distribution of R∗(ψ) is N(0, 1), to error of order
O(n−3/2), conditional on ancillary, hence unconditionally. Normal
approximation to distribution of R∗(ψ) yields third-order (relative)
conditional accuracy in ancillary statistic setting, and confidence
sets with third-order repeated sampling coverage accuracy.

Inference which respects that of exact conditional inference in
exponential family setting to same third-order.
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RE: n = 5, ψ = 2, µ = 1.0, QQ plot, R(ψ)
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RE: n = 5, ψ = 2, µ = 1.0, QQ plot, R∗(ψ)
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Some comments on analytic methods

I Often very awkward analytic calculations.

I Successfully packaged (Davison et al.) for certain classes of
model, e.g. nonlinear heteroscedastic regression models.

I Also, relatively unexplored is idea of using simulation to
replace analytic calculations, specifically to calculate Bartlett
correction.

I Versions of R∗ for vector interest parameters possible, seen as
less effective than in case p = 1, or than Bartlett correction.
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(Constrained) Bootstrap

Bootstrap Principle: estimate sampling distribution of interest by
that under a fitted model.

Key: appropriate handling of nuisance parameter. Repeated
sampling properties of bootstrap are [modulo Monte Carlo error
from using finite simulation] entirely determined by nuisance
parameter effects.
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Bootstrap Principle: estimate sampling distribution of interest by
that under a fitted model.

Key: appropriate handling of nuisance parameter. Repeated
sampling properties of bootstrap are [modulo Monte Carlo error
from using finite simulation] entirely determined by nuisance
parameter effects.



The key recommendation

Use as basis of bootstrap calculation F (y ; (ψ, φ̂ψ)), fitted model
with nuisance parameter taken as constrained MLE, for given value
of interest parameter.



Properties: repeated sampling perspective

I ‘Essentially exact’.

I Estimate true sampling distribution of W (ψ) to error of order
O(n−2). Confidence sets constructed from bootstrap
distribution of W (ψ) have coverage error of order O(n−2).

I Estimate true sampling distribution of R(ψ) to error of order
O(n−1).

I But, confidence sets constructed from bootstrap distribution
of R(ψ) have third-order coverage accuracy: coverage error of
order O(n−3/2).
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Detail

The confidence set is

{ψ : R(ψ) ≤ G̃−1(1− α)},

where G̃ denotes the sampling distribution of R(ψ) under F (y ; θ̃),
the distribution with parameter value fixed as θ̃ = (ψ, φ̂ψ).

Corresponds to a significance function u(Y , ψ) = G̃ (R(ψ)).

Note: a different bootstrap calculation required for each ψ. The
significance function may not be monotonic.
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where G̃ denotes the sampling distribution of R(ψ) under F (y ; θ̃),
the distribution with parameter value fixed as θ̃ = (ψ, φ̂ψ).

Corresponds to a significance function u(Y , ψ) = G̃ (R(ψ)).

Note: a different bootstrap calculation required for each ψ. The
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Other schemes, e.g. substituting global MLE of nuisance
parameter, less effective, in general. If Ĝ denotes the distribution
of R(ψ) under sampling from F (y ; θ̂), the confidence set

{ψ : R(ψ) ≤ Ĝ−1(1− α)},

has coverage error of order O(n−1).



PPI

Inference based on bootstrapping distribution of R(ψ) respects
PPI.

So does making normal approximation to sampling distribution of
R∗(ψ).
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RE, data sample: significance functions
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RE, data example: 95% confidence limits

I R∗(ψ): interval is (0.585,∞).

I Bootstrap R(ψ): interval is (0.570,∞).



RE: n = 5, bootstrap p−values vs R∗ p−values
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A practical example: signal detection

LHC: detection of signal in presence of background noise.

Set confidence limits on underlying signal, based on data from
observation channel.

Observation is number of times a particular event is observed.
Supposed to have Poisson distribution with mean ψγ + β, where
interest parameter ψ represents signal, β and γ represent
respectively a background rate at which event occurs and efficiency
of the measurement device.
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Precise formulation

Available data is y1, y2, y3. Realizations of independent Poisson
random variables with means ψγ + β, βt and γu respectively,
where t and u are known and parameters ψ, β, γ are unknown.

In principle, ψ ≥ 0, and nuisance parameters β, γ are positive.

Consider y1 = 1, y2 = 8, y3 = 14, with t = 27, u = 80.
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Inference

Appropriate inference is test of hypothesis ψ = 0 against one-sided
alternative ψ > 0.

Significance probability is one minus significance function at ψ = 0.

R(ψ): p−value is 1− Φ{R(0)} = 0.163.

R∗(ψ): p−value is 1− Φ{R∗(0)} = 0.127.

Bootstrap R(ψ): p−value is 0.156 [10,000 bootstrap samples].

Weak evidence of positive signal.
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Significance functions
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Remarks

I Lower confidence limits are negative. If insist on confidence
limits, take lower limit as maximum, max{0, ψα}, of actual
limit ψα and lower physically admissible value of zero? All
lower confidence limits are zero (coherent with p−values for
testing for a positive signal). Calculation of p−value more
appropriate?

I Even though large simulation is carried out, bootstrap
significance function here is not smooth. Smoothing required?

I Discrete distribution. Does not effect essential inferential
issues, but introduces (mainly computational) complications.
Not all theoretical results about rates of error etc. necessarily
apply to such cases. Good practical performance.
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Example: p = 1, q = 20, ‘Behrens-Fisher’

Let Yij , i = 1, . . . , ng , j = 1, . . . , ni be independent normal rvs,
Yij ∼ N(µ, σ2i ).

Interest parameter is µ, nuisance parameter (σ21, . . . , σ
2
ng ).

Take case ng = 20, ni ≡ n, σ2i = i , varying n.

Compare coverages of one-sided (upper) confidence limits for true
µ = 0, obtained by N(0, 1) approximation to distributions of R,
R∗, and by (constrained) bootstrap estimation of distribution of R
(based on drawing 10,000 bootstrap samples). Figures based on
50,000 MC replications.
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Let Yij , i = 1, . . . , ng , j = 1, . . . , ni be independent normal rvs,
Yij ∼ N(µ, σ2i ).

Interest parameter is µ, nuisance parameter (σ21, . . . , σ
2
ng ).
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Nominal (%) 1.0 5.0 10.0 90.0 95.0 99.0

n = 3 R 7.6 16.3 22.5 77.6 83.7 92.4
R∗ 3.3 9.9 15.9 83.3 89.4 96.1

boot 1.1 5.1 10.2 89.9 94.8 99.0

n = 5 R 3.3 9.9 15.7 84.3 90.2 96.7
R∗ 1.9 7.2 12.8 87.3 92.7 98.0

boot 1.0 5.0 10.0 90.1 95.0 99.0

n = 10 R 1.8 7.0 12.5 87.6 92.9 98.1
R∗ 1.3 5.9 11.1 88.9 93.9 98.6

boot 1.0 5.1 10.0 90.0 94.8 98.9



Example: p = 2, q = 10

Let Y1ij ,Y2ij , i = 1, . . . , ng , j = 1, . . . , ni be independent normal
rvs, Y1ij ∼ N(µ1, σ

2
i ),Y2ij ∼ N(µ2, σ

2
i ).

Interest parameter is (µ1, µ2), nuisance parameter (σ21, . . . , σ
2
ng ).

Take case ng = 10, ni ≡ n, σ2i = i , varying n.

Compare coverages of confidence regions for true (µ1, µ2) = (1, 2),
obtained by χ2

2 approximation to distribution of LRS W ,
(empirical) Bartlett correction of W and by bootstrap estimation
of sampling distribution of W (based on drawing 10,000 bootstrap
samples). Figures based on 50,000 MC replications.
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Let Y1ij ,Y2ij , i = 1, . . . , ng , j = 1, . . . , ni be independent normal
rvs, Y1ij ∼ N(µ1, σ

2
i ),Y2ij ∼ N(µ2, σ

2
i ).

Interest parameter is (µ1, µ2), nuisance parameter (σ21, . . . , σ
2
ng ).

Take case ng = 10, ni ≡ n, σ2i = i , varying n.

Compare coverages of confidence regions for true (µ1, µ2) = (1, 2),
obtained by χ2

2 approximation to distribution of LRS W ,
(empirical) Bartlett correction of W and by bootstrap estimation
of sampling distribution of W (based on drawing 10,000 bootstrap
samples). Figures based on 50,000 MC replications.



Nominal (%) 1.0 5.0 10.0 90.0 95.0 99.0

n = 5 W 0.8 4.1 8.0 83.9 90.7 97.5
W̄c 1.1 5.1 10.1 90.0 95.0 99.1

boot 0.9 5.0 9.9 89.9 94.9 99.0

n = 10 W 0.8 4.5 9.0 87.7 93.4 98.5
W̄c 1.1 5.1 9.9 90.0 95.0 99.1

boot 1.0 4.9 9.8 90.0 95.0 99.1

n = 20 W 0.9 4.6 9.6 89.2 94.3 98.7
W̄c 1.0 4.9 10.1 90.3 95.0 99.0

boot 1.0 5.0 9.6 90.0 95.1 99.1



Conditional properties of bootstrap, p = 1

Recall, bootstrap applied unconditionally.

I Multi-parameter exponential family context: inference
agreeing with exact conditional inference to relative error
third-order, O(n−3/2). Same conditional accuracy as R∗.
DiCiccio & Young (2008).

I Same context, automatically reproduces appropriate objective
(‘conditional second-order probability matching’) Bayesian
inference to order O(n−3/2), in many circumstances.
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I Ancillary statistic models: bootstrap inference using R(ψ)
agrees with conditional inference to second-order, O(n−1);

I Same for other asymptotically N(0, 1) pivots, provided these
are constructed using observed information. Pivot must be
‘stable’ to second-order, O(n−1): marginal and conditional
distributions must agree to that order. Not true, for example,
for TW (ψ) and TS(ψ).

I Compare with third-order conditional accuracy of R∗.

I Third-order conditional accuracy unwarranted? Ancillary
statistics typically not unique, different conditional inferences
will typically only agree to second-order.
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Vector interest parameter (p > 1)

Repeated sampling perspective: simulating the distribution of
W (ψ), at either global MLE or constrained MLE, produces
p−values uniformly distributed under H0, to error of order O(n−2).

Ancillary statistic models: bootstrapping W (ψ) approximates exact
conditional inference given A = a to third-order, O(n−3/2).
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Objective Bayes (p = 1)

I Exponential family context: conditional (and hence
unconditional, repeated sampling) frequentist inference
accurate to O(n−3/2) achievable by any prior in a general
class, provided a simple model condition holds. DiCiccio &
Young (2010).

I Ancillary statistics models: unconditional higher-order
probability matching priors give conditional frequentist
accuracy to O(n−3/2) under some further conditions
(DiCiccio, Kuffner & Young, 2012). But now, in key cases
exact conditional matching priors exist and are unique. In
these cases, objective Bayes is preferred route to conditional
frequentist accuracy?
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II: Detailed theoretical analysis



A detailed analysis of R∗(ψ)

The R∗ statistic is defined by

R∗(ψ) = R(ψ) + R(ψ)−1 log(v(ψ)/R(ψ)),

where v(ψ) is given by

v(ψ) =

∣∣∣∣∣ L;θ̂(θ̂)− L;θ̂(θ̃)

Lφ;θ̂(θ̃)

∣∣∣∣∣ /{|jφφ(θ̃)|1/2|j(θ̂)|1/2}.



Here, the log-likelihood function has been written as L(θ; θ̂, a),
with (θ̂, a) minimal sufficient and a ancillary, and

L;θ̂(θ) ≡ L;θ̂(θ; θ̂, a) =
∂

∂θ̂
L(θ; θ̂, a),

Lφ;θ̂(θ) ≡ Lφ;θ̂(θ; θ̂, a) =
∂2

∂φ∂θ̂
L(θ; θ̂, a).

Also, j denotes the observed information matrix, j(θ) = (−Lrs(θ)),
with Lrs(θ) = ∂2L(θ)/∂θr∂θs , and jφφ denotes its (φ, φ)
component.



A decomposition

We may decompose R∗(ψ) as

R∗(ψ) = R(ψ) + NP(ψ) + INF(ψ),

for quantities NP(ψ) and INF(ψ), both of order Op(n−1/2).



Definitions

Explicitly, we have

NP(ψ) = − 1

R(ψ)
logC (ψ),

where

C (ψ) =
{|jφφ(θ̂)||jφφ(θ̃)|}1/2

|Lφ;φ̂(θ̃)|
,

with Lφ;φ̂(θ) ≡ Lφ;φ̂(θ; θ̂, a) = ∂2L(θ; θ̂, a)/∂φ∂φ̂ and jφφ denoting,
as before, the (φ, φ) component of the observed information j .



Also,

INF(ψ) =
1

R(ψ)
log{u(ψ)/R(ψ)},

where

u(ψ) = jp(ψ̂)−1/2 ∂

∂ψ̂
{M(ψ̂)−M(ψ)}.

Here jp is the profile observed information,
jp(ψ) = −∂2M(ψ)/∂ψ2, and the derivative with respect to ψ̂ is
calculated with M(ψ̂)−M(ψ) considered as a function of ψ, ψ̂, φ̂ψ
and a.



Interpretations

NP(ψ) and INF(ψ) are interpreted as correcting respectively for
presence of the nuisance parameter φ and deviation from standard
normality of R(ψ) itself.

So, broadly speaking, INF(ψ) represents what we can eliminate by
bootstrapping to replace asymptotic approximation, NP(ψ)
represents intrinsic difficulty of the inference.
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Quantitative analysis

I Examination of NP(ψ) and INF(ψ) provides simple
quantitative method for measuring the respective effects of
the two adjustments.

I Observe NP(ψ) and INF(ψ) are determined to Op(n−1) by
their means, E{NP(ψ)} and E{INF(ψ)}.

I Explicit approximation of E{NP(ψ)} and E{INF(ψ)}
provides statistical insight, in particular to effects of
high-dimensional nuisance parameter on inference and to
impact of nuisance parameter on parametric bootstrap.
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Expectations

We have:

E{INF(ψ)} = η1/2λ1rτ st(12λrs,t + 1
6λrst) + O(n−1);

E{NP(ψ)} = −η1/2λ1rνst(λrs,t + 1
2λrst) + O(n−1).



Interpretation

If there is no nuisance parameter, then λ11 = (λ11)−1, η = −λ11,
τ11 = (−λ11)−1, and ν11 = 0, and it follows that

E{R(ψ)} = (−λ11)−3/2(12λ11,1 + 1
6λ111) + O(n−1).



Suppose there is a vector nuisance parameter φ, but assume that
the interest parameter ψ and φ are orthogonal [always achievable in
principle]; then λ11 = (λ11)−1, η = −λ11, λ1a = 0 (a = 2, . . . , d),
τ rs = 0 except when r = s = 1, in which case τ11 = (−λ11)−1, and

E{INF(ψ)} = −(−λ11)−3/2(12λ11,1 + 1
6λ111) + O(n−1).



Therefore, to error of order O(n−1), E{INF(ψ)} corresponds to a
mean adjustment for the signed root statistic R(ψ) in the problem
where the orthogonal nuisance parameter φ is known.

The N(0, 1) approximation to the distribution of R(ψ) is typically
rather accurate in scalar parameter problems, so the mean
adjustment should be generally small, so we can anticipate that
INF(ψ) is in some generality small.



Further analysis

In principle, we can always reparameterize so that ψ and the
nuisance parameter φ are orthogonal.

Invariance of adjustments to reparameterization allows nuisance
parameter effects to be quantified by

E{NP(ψ)} = −1
2(−λ11)−1/2λabλab1 + O(n−1).

Multiple sum over nuisance parameter, in accordance with intuition
that NP(ψ) can be anticipated to be large when dimensionality of
nuisance parameter is large. How large?
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Explicit approximations

We may explicitly approximate E{INF(ψ)} to O(n−1) by

gINF(θ) = η1/2λ1rτ st(12λrs,t + 1
6λrst)

and E{NP(ψ)} to the same order by

gNP(θ) = −η1/2λ1rνst(λrs,t + 1
2λrst).



Remarks 1

Quantities gINF(θ) and gNP(θ) are related to asymptotic quantities
detailed by Efron (1987, JASA) in description of the ‘bias
corrected accelerated’, BCa, method of construction of bootstrap
confidence intervals.

Specifically, we have gINF(θ) = ac and gNP(θ) = z0 − ac , where ac
and z0 are respectively acceleration and bias-correction quantities.
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6
{skew(U) + skew(T )}+ O(n−1),

where U = (ψ̂ − ψ)/σ, with σ2 the asymptotic variance of ψ̂, so
that σ2 ≡ σ2(θ) = λ1,1 + O(n−2), and T = (ψ̂ − ψ)/σ̂, with
σ̂2 = σ2(θ̂).
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Φ(z0) = Pr(ψ̂ ≤ ψ) + O(n−1),

where Φ is the standard normal distribution function.
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Remarks 2

Quantities gNP(θ) and gINF(θ) are both of order O(n−1/2).

Calculation of the individual values provides valuable statistical
insight to importance of nuisance parameter effects and likely
operational performance of bootstrap (which is completely
determined by nuisance parameter).



Remarks 3

In general, gNP(θ) and gINF(θ) depend on the unknown parameter
θ.

Bootstrap principle: they may be estimated by gNP(θ̃) and gINF(θ̃)
respectively.

A simple adjustment of the signed root statistic R(ψ), is given by
Ra(ψ) = R(ψ) + gNP(θ̃) + gINF(θ̃).

Since gNP(θ̃)− gNP(θ) = Op(n−1), we have that
Ra(ψ) = R∗(ψ) + Op(n−1), and therefore that Ra(ψ) is N(0, 1) to
error of order O(n−1).
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Methodological Issues

I ‘Uniqueness of inference’.

I Computational considerations.

I Relationship between analytic and bootstrap approaches.

I Choice of a ‘good pivot’.



When do inferences agree?

In general, p−values from different asymptotically N(0, 1) pivots
will agree only to first-order, O(n−1/2).

However, establish simple sufficient conditions, under which
p−values from two statistics will agree to second-order, O(n−1),
provided approximations to distributions accurate to O(n−1) are
employed. Such accurate approximation obtained quite generally
by bootstrap.
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Consequences

I TW (ψ) and TS(ψ) in general do not provide p−values that
agree with those from R(ψ) to order Op(n−1).

I But, versions of Wald and score statistics constructed using
observed information will yield p−values agreeing with those
from R(ψ) to Op(n−1).

I Etc., etc.
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Computational considerations

Use of W (ψ) and R(ψ) requires calculation of both global and
constrained MLEs. Potentially unattractive compared to Wald
statistic, TW (ψ) [or multivariate version]. Latter routinely
employed in statistical packages etc., but not stable or
parameterization invariant.

Bootstrap: must recalculate for a series of B bootstrap samples.
General guideline: B of order of few 1000’s to reduce Monte Carlo
variability to acceptable levels, to ‘capture’ good theoretical
properties. In small samples or with high-dimensional nuisance
parameter solution of likelihood equations can be a worry.

R∗(ψ): computationally simple, potentially awkward analytic
calculations/coding. (Highly) stable, parameterization invariant.
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General pivot

For general, asymptotically N(0, 1) pivot T (ψ), producing same
p−values as R(ψ) to Op(n−1), normalized (Cornish-Fisher) version
of T (ψ), N(0, 1) to error of order O(n−1), is:

T (ψ)− 1

6
κ3{T (ψ)}2 + NP(ψ) + INF (ψ),

in terms of third cumulant κ3 of T (ψ).



When does bootstrap work?

Normalizing transformation is automatically incorporated by
bootstrap refinement of the asymptotic N(0, 1) approximation.

I ‘Primary effect of bootstrap is to estimate skewness’. Key
requirement for bootstrap to perform well is that third
cumulant of T (ψ) can be estimated accurately. Difficult if n
is small, or number of nuisance parameters is large.

I If skewness is small, as with R(ψ), where it is of order
O(n−1), estimation of skewness less crucial, explaining why
bootstrap works extraordinarily well with R(ψ).
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I If skewness is constant with respect to nuisance parameter,
bootstrap should work well, inaccuracy in estimating nuisance
parameter does not translate into inaccuracy in estimating
skewness.

I Previous focus on variance-stabilizing transformations to
improve bootstrap accuracy: variance stabilizing
transformations typically reduce skewness of parameterization
dependent pivot T (ψ). DiCiccio, Monti & Young (2006).
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Relationship between Bootstrap and R∗(ψ)

Conceptually related, not distinct methodologies.



Details

Specifically:

I p− values calculated from N(0, 1) approximation to
distribution of R∗(ψ) will quite generally agree with those
from bootstrap to order Op(n−1).

I Multi-parameter exponential family models: (unconditional)
bootstrap p−values agree with those from R∗(ψ) to
Op(n−3/2).

I Ancillary statistic models: normal approximation to R∗(ψ) is
an O(n−3/2) (saddlepoint) approximation to conditional
bootstrap [which could use if we could simulate the
conditional distribution of R(ψ) given A = a].
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The bottom line

If likelihood equations can be reliably solved, analytic simplicity
indicates bootstrapping of R(ψ) or W (ψ) as a highly effective
methodology.



I Competitive in terms of accuracy with analytic alternatives.

I Unlikely to be computationally prohibitive [moderate B
adequate to ensure MC variability does not impair good
theoretical properties].

I Stable (respects CP to high-order) and parameterization
invariant: ‘inferentially correctness is OK’.

I Vector ψ: use bootstrap calculation to estimate mean of
W (ψ), then base inference on χ2 approximation to empirically
Bartlett-corrected statistic W̄c(ψ).
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III: Further illustrations



Further Illustration 1: resampling accuracy, RE (ctd)

Y1, . . . ,Yn IID inverse Gaussian, with density

f (y ;µ, ψ) =

(
ψ

2πy3

)1/2

exp

(
− ψ

2µ2y
(y − µ)2

)
, y > 0,

interest parameter is shape ψ, mean µ as nuisance.

20,000 replications, n = 5, true µ = 1, ψ = 2. Compare coverages
of confidence limits of different nominal coverages obtained by:
normal approximation to R(ψ); normal approximation to R∗(ψ);
bootstrap of R(ψ); three objective Bayes priors (OB1, OB2 and
OB3). Each replication: 5,000 bootstrap samples, MC
construction of Bayes posterior quantile.
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f (y ;µ, ψ) =

(
ψ

2πy3

)1/2

exp

(
− ψ

2µ2y
(y − µ)2

)
, y > 0,

interest parameter is shape ψ, mean µ as nuisance.

20,000 replications, n = 5, true µ = 1, ψ = 2. Compare coverages
of confidence limits of different nominal coverages obtained by:
normal approximation to R(ψ); normal approximation to R∗(ψ);
bootstrap of R(ψ); three objective Bayes priors (OB1, OB2 and
OB3). Each replication: 5,000 bootstrap samples, MC
construction of Bayes posterior quantile.



OB1 has π(ψ, µ) ∝ ψ−1µ−2, OB2 has π(ψ, µ) ∝ ψ−1/2µ−3/2 and
OB3 has ψ(ψ, µ) ∝ ψ−1µ−3/2.

In theory, OB1 and OB3 should give O(n−3/2) coverage accuracy,
but not OB2. Typical of non-uniqueness of second-order
(O(n−3/2)) matching prior.

Actually exponential family, appropriate frequentist inference is
conditional, but provides instructive example where repeated
sampling properties should, in principle, be very similar.
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Nominal (%) 1.0 5.0 10.0 90.0 95.0 99.0

Φ(R) 0.3 1.7 3.8 74.6 84.4 95.0
Bootstrap R 1.1 5.1 10.1 90.1 95.1 99.0

Φ(R∗) 1.0 4.8 9.6 89.4 94.8 98.9
OB1 1.0 4.9 10.0 90.3 95.1 99.0
OB2 3.0 10.6 18.4 94.1 97.2 99.5
OB3 1.0 4.7 9.3 89.6 94.7 98.9



Comments

I Normal approximation to distribution of R(ψ) is inaccurate.

I Bootstrap and normal approximation to R∗(ψ) both highly
accurate.

I Objective Bayes yields good repeated sampling accuracy, with
OB1 or OB3.
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Conditional inference: detail

With S = n−1
∑

i Y
−1
i , C = n−1

∑
i Yi , correct inference is

conditional, based on conditional distribution of S , given C = c .

Equivalent to inference based on the marginal distribution of

V =
∑

i (Y
−1
i − Y

−1
). Distribution of ψV is χ2

n−1.
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Have

R(ψ) = sgn(ψ̂ − ψ){n(log ψ̂ − 1− logψ + ψ/ψ̂)}1/2,

ψ̂ = n/V .

Distribution of R(ψ) is free of nuisance parameter µ: infinite
simulation bootstrap will approximate sampling distribution
exactly, no coverage error.

Also, since R(ψ) is a monotonic function of V , bootstrap inference
will actually replicate the appropriate exact conditional inference
without error.
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Further Illustration 2: RE (ctd), extended

Let Yij , for i = 1, . . . , n and j = 1, . . . , q be independent, inverse
Gaussian random variables, with Yij having probability density

f (y ;ψ, φj) = {ψ/(2π)}1/2y−3/2 exp{−1
2(ψy−1 + φjy) + (ψφj)

1/2},

y > 0, ψ, φj > 0, so that θ = (ψ, φ1, . . . , φq). Here ψ and
(φ1, . . . , φq) are non-orthogonal.



Here, irrespective of the parameter value θ,

n1/2gINF(θ) ≡ −1/{3(2q)1/2/2},

and
n1/2gNP(θ) ≡ −(q/2)1/2,

so that
gNP(θ)/gINF(θ) ≡ 3q/2.



The adjusted statistic Ra(ψ) may be constructed in this example
without the need to estimate the nuisance parameters φ1, . . . , φq.



Implications for bootstrap

To order O(n−1) expectations of adjustments do not depend on
values of nuisance parameters, only dimension.

Parametric bootstrap ought to be accurate? Inference, at least to
order O(n−1), not governed by nuisance parameter values:
bootstrap substitution should be OK.

In fact, here R(ψ) readily seen to be exactly ‘pivotal’: its sampling
distribution is completely free of nuisance parameter. (Infinite
simulation) bootstrap gives exact inference. In practice, finite
Monte Carlo simulation: exactness is compromised by finiteness of
simulation.



Implications for bootstrap

To order O(n−1) expectations of adjustments do not depend on
values of nuisance parameters, only dimension.

Parametric bootstrap ought to be accurate? Inference, at least to
order O(n−1), not governed by nuisance parameter values:
bootstrap substitution should be OK.

In fact, here R(ψ) readily seen to be exactly ‘pivotal’: its sampling
distribution is completely free of nuisance parameter. (Infinite
simulation) bootstrap gives exact inference. In practice, finite
Monte Carlo simulation: exactness is compromised by finiteness of
simulation.



Implications for bootstrap

To order O(n−1) expectations of adjustments do not depend on
values of nuisance parameters, only dimension.

Parametric bootstrap ought to be accurate? Inference, at least to
order O(n−1), not governed by nuisance parameter values:
bootstrap substitution should be OK.

In fact, here R(ψ) readily seen to be exactly ‘pivotal’: its sampling
distribution is completely free of nuisance parameter. (Infinite
simulation) bootstrap gives exact inference. In practice, finite
Monte Carlo simulation: exactness is compromised by finiteness of
simulation.



Numerical results

Consider sample size n = 5, and two values of q, q = 5, 20. For
parameter settings ψ = 2, φi = i , i = 1, . . . , q, 100,000 datasets
were generated.

Accuracy of inference based on N(0, 1) approximation to the
distributions of the three statistics R(ψ),R∗(ψ) and Ra(ψ)
expressed in terms of observed coverages over the 100,000 samples
of confidence sets for ψ, obtained by the normal approximation, for
different nominal coverages.

Also, coverages when bootstrapping used to approximate sampling
distribution of R(ψ), using 5000 bootstrap samples.
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Nominal (%) 1·0 2·5 5·0 10·0 90·0 95·0 97·5 99·0

q = 5

R(ψ) 0·1 0·3 0·8 1·9 65·4 77·2 85·3 91·9
R∗(ψ) 0·9 2·3 4·7 9·5 89·4 94·7 97·4 98·9
Ra(ψ) 1·1 2·6 5·0 9·7 87·8 93·6 96·6 98·5
Boot 1·0 2·5 5·0 10·0 90·2 95·1 97·6 99·0

q = 20

R(ψ) 0·0 0·0 0·0 0·0 38·8 52·6 64·4 76·5
R∗(ψ) 0·8 2·2 4·4 8·8 88·8 94·3 97·2 98·8
Ra(ψ) 0·9 2·3 4·4 8·7 86·8 92·9 96·2 98·3
Boot 1·0 2·5 4·9 9·8 90·0 95·0 97·6 99·0



Discussion

I R∗(ψ) easily constructed in this full exponential family model,
gives accurate results.

I Normal approximation to the distribution of R(ψ) itself is
highly inaccurate, and the nuisance parameter effect is
substantial.

I Coverage figures for the simple adjusted statistic Ra(ψ) are
decent.

I Bootstrap is, however, highly accurate.

I Simulation allows estimation of E{NP(ψ)} and E{INF(ψ)}:
we have, q = 5, E{NP(ψ)}/gNP(θ) =1·05, with
E{INF(ψ)}/gINF(θ) =1·02, so that the approximations to the
means of the two adjustments are highly accurate even for
n = 5.
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Further Illustration 3: Curved exponential family model

Let Yij , for i = 1, . . . , n and j = 1, . . . , q be independent normal

random variables with means µj > 0 and variances ψµζj , with ζ a
known constant.

If ζ = 0 or ζ = 1 the model is a full exponential family, otherwise
it is curved. The parameter of interest is ψ, with µ1, . . . , µq as
nuisance parameters, θ = (ψ, µ1, . . . , µq). Fix ζ = 1/2. Again, ψ
and (µ1, . . . , µq) are non-orthogonal.

Calculation of R∗(ψ) is intractable. Construction of Ra(ψ) is no
more complex than in Further Illustration 2.



Now the ratio gNP(θ)/gINF(θ) does depend (weakly?) on the value
of the parameter θ. Illustrative values are given below, for two
cases: case (a) has ψ = 1, µi = i , i = 1, . . . , q, while case (b) has
ψ = 2, µi = i , i = 1, . . . , q.

q 1 2 5 10 20 50

(a) 1·11 2·45 6·77 14·17 29·09 74·01
(b) 0·82 2·04 6·19 13·49 28·33 73·19



Numerical results

Obtain empirical estimates, based on 20,000 replications, for case
(a), with sample size n = 15, of coverages of confidence sets
obtained by normal approximation to the distributions of R(ψ) and
Ra(ψ) in this problem, as before for two values of nuisance
parameter dimension, q = 5, 20.

Again, compare with bootstrap using 5000 bootstrap samples for
each estimation.



Nominal (%) 1·0 2·5 5·0 10·0 90·0 95·0 97·5 99·0

q = 5

R(ψ) 4·0 8·2 14·2 23·4 96·5 98·5 99·3 99·8
Ra(ψ) 1·1 2·9 5·6 11·1 90·3 95·1 97·6 99·0
Boot 1·0 2·5 5·0 10·2 90·4 95·3 97·7 99·1

q = 20

R(ψ) 10·5 18·8 28·0 40·7 98·8 99·6 99·7 99·9
Ra(ψ) 1·4 3·1 6·0 11·4 90·4 94·9 97·5 99·0
Boot 1·1 2·6 5·2 10·2 90·2 94·8 97·5 99·0



The distribution of the unadjusted statistic R(ψ) is very far from
N(0, 1): the empirical adjustment leads to a statistic Ra(ψ) whose
distribution is satisfactorily approximated as N(0, 1).

Bootstrap is again best.



Further Illustration 4: an example of conditional inference

Y1, . . . ,Yn IID gamma, mean µ, shape parameter ν and density

f (y ;µ, ν) =
νν

Γ(ν)
exp
[
−ν
{y
µ
− log

(
y

µ

)}]1

y
, y > 0.

Appropriate inference on ν, with µ as nuisance, is conditional,
based on conditional distribution of Q =

∏
Yi , given observed

value, c , of C =
∑

Yi .
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∏
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Data configuration q = 1.0, c = 20.0, varying n.

Evaluate conditional frequentist confidence levels of bootstrap,
analytic and specific objective Bayes limits, against exact
conditional inference.

Bootstrap limits based on 5 million samples. MC construction of
objective Bayes (OB) limits.

Model condition is not satisfied here, so objective Bayes here does
not achieve theoretical O(n−3/2) accuracy.



n Method 5% (quantile) 95% (quantile)

5 OB 5.18 (0.122) 95.03 (0.820)
boot 5.07 (0.121) 95.01 (0.819)
R∗ 5.67 (0.126) 95.35 (0.832)

10 OB 5.11 (0.357) 95.01 (1.370)
boot 5.00 (0.355) 95.00 (1.369)
R∗ 5.19 (0.358) 95.11 (1.374)

15 OB 5.05 (0.912) 95.01 (2.908)
boot 4.98 (0.909) 95.00 (2.907)
R∗ 5.06 (0.913) 95.06 (2.912)



Further Illustration 5: conditional inference, Weibull

Let {T1, . . . ,Tn} be random sample from the Weibull density

f (t; ν, λ) = λν(λt)ν−1 exp{−(λt)ν}, t > 0,

interest parameter ν.

Take Yi = logTi : the Yi are random sample from extreme value
distribution EV (µ, ψ), location-scale family, with scale and
location parameters ψ = ν−1, µ = − log λ.

Exact conditional inference for ψ conditions on a = (a1, . . . , an),
with ai = (yi − µ̂)/ψ̂.



5000 replications from ν = λ = 1.

One-sided inference: test H0 : ψ = 1, against ψ > 1. Inference
based on: N(0, 1) approximation to distribution of R; N(0, 1)
approximation to distribution of R∗; bootstrapping (marginal)
distribution of R.

Two-sided inference: test H0 against ψ 6= 1. Inference based on:
χ2
1 approximation to distribution of W ; empirical (marginal)

Bartlett correction; bootstrapping (marginal) distribution of W .



Compare the average absolute percentage relative error of different
approximations to the exact conditional p-values over the 5000
replications.

Bootstrap results are based on 5,000,000 samples, same simulation
being used for empirical Bartlett correction.



One-sided Two-sided

n R R∗ boot W W̄c boot

10 37.387 1.009 0.674 12.318 0.666 0.611
(0.0%) (17.1%) (82.9%) (0.0%) (43.9%) (56.1%)

20 25.473 0.388 0.397 6.118 0.185 0.227
(0.0%) (46.2%) (53.8%) (0.0%) (63.4%) (36.6%)

30 20.040 0.252 0.307 4.158 0.131 0.200
(0.0%) (60.9%) (39.1%) (0.0%) (68.7%) (31.3%)

40 17.865 0.250 0.273 3.064 0.117 0.177
(0.0%) (70.1%) (29.9%) (0.0%) (69.7%) (30.3%)



Weibull: n = 5, R∗ p−values vs bootstrap p−values
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Weibull: n = 5, exact conditional p−values vs bootstrap
p−values
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Weibull: n = 5, R∗ p−values vs exact conditional p−values
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Concluding remarks

I In some circumstances, objective Bayes may be judged as
most effective route to frequentist accuracy and correctness,
but not always available.

I Analytic and bootstrap approaches to inference highly
comparable.

I Strong theoretical basis for use of signed root statistic (and
likelihood ratio statistic).

I Discrete data problems. Broad operational conclusions OK,
detail of theory less certain.

I Non-regular problems?
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I Robustness to model (mis-)specification important. Lu &
Young (2012): work with a robustified version of R(ψ) or
W (ψ). Bootstrapping the robust statistic is strikingly
effective: simulation of the statistic under wrong distribution
can nevertheless yield accurate inference with small n, even if
theoretical order of error does not improve on normal
approximation. By contrast, methods such as R∗(ψ) are
highly non-robust.

I Conclusions valid for common adjusted forms of likelihood.
Intractable or complex likelihood: theory necessary for
composite and pseudo-likelihood, but practical effectiveness
striking.

I Stratification of a bootstrap simulation by values of
appropriate conditioning statistic effective as means of
reducing error, but awkward to implement.
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