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Motivation

10-dimensional time series
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Network
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Vector Autoregressive Model (VAR)

Two stationary time series y; » and y» ;.
VAR(1) in dimension g = 2:

vie = Tinyie1+T11201 + e
Voo = T1ioiyie-1+T120)001+ €2

Covariance matrix of (e1y, ext) is X.
Vector notation: y, = 1y;—1 + €,

/17



The VAR model

Let y; be a g-dimensional stationary time series

Vector Autoregressive Model of order p:

e =l1ye1 + oy + ...+ ert—p + €,

@ Matrices [; are autoregressive parameters

@ e, error with covariance matrix £ = Q1.

@ Standard estimation procedure: OLS equation by equation.
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Example: a Market Response Model

Sales, promotion and prices for 17 product categories: g = 51

T = 77 weekly observations
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VAR model

VAR model for g = 3 x 17 = 51 time series

@ One lag

— 1 x (g x q) = 2601 regression parameters
— 1326 unique elements in X

o Two lags

— 2 x (g x q) = 5202 regression parameters
— 1326 unique elements in X

— Explosion of number of parameters
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The VAR model: Overparametrization

ML estimators will be
@ Not computable

@ |naccurate

Sparse estimation = many estimated parameters equal to zero

@ Suitable if T is small relative to the number of parameters
@ Easier to interpret
@ Automatic variable selection

@ Better estimation and prediction performance
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Sparse Estimation: Lasso

In the multiple linear regression model
y=pa+ B+ ...+ Bxk t e

Minimization problem

k
f= argmin (y — XB) (y = XB) + A 18-

=1

Tibshirani (1996)



asso for the VAR model

@ Multiple equations

— Partial correlation between the error terms
— Glasso of Friedman et al. (2008)

@ Dynamic nature of the model

— Selecting a time series into one of the equations = selecting the
variable and all its lags
— Group lasso (Yuan and Lin, 2006)
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Penalized ML estimation

Rewrite the VAR in matrix notation:
Y =Y.l +E,

where

o Y = (yp+la"‘7yT)/
(] YL - (XP+17 s aXT), with Xt - (y;_la U ’ylt_p)/
o M=(Fy,....T,)

o E= (ep+1, ceey eT)’.
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Penalized ML estimation (cont.)

Penalized negative log likelihood:

(T, Q) = argmin itr ((Y —-Y . NQY — Y._I')’> — log| Q2|

re |
+A1 Z [1glle + A2 Y 1,
KAk

with
@ 7, a subvector of I
e G = g total number of groups.
o Q = X! the precision matrix
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Algorithm

Solving for T'|S2:

G
= 1 /
F1Q = argmin tr((Y — YUDQUY — YuT)) + > Il

— groupwise lasso
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Algorithm (cont.)

Solving for QT :

. 1
QI = argmin —tr((Y—Y._I')Q(Y—Y._F)’) —log Q|+ X2 > [Quwl.
Q T kK

— penalized inverse covariance estimation (glasso)
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Selection of tuning parameters

In the iteration step |2, select A; to minimize

B/C/\l = -2 IOg L)\l + k)\l IOg( T),

@ L), is the estimated likelihood using A\,

@ kjy, is the number of non-zero estimated regression coefficients.

In the iteration step Q|I, select A\, analogously.
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Networks from the VAR coefficients f

Network with g nodes. Each node corresponds with a time series.

@ draw an edge from node i to node j if

P ~
D Mol #0
p=1

Additionally (if p = 1)
@ the edge width is the size of the effect
o the edge color is the sign of the effect

(blue if positive, red if negative)
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What about Bayesian statistics?

@ Bayesian methods

— Minnesota prior (Koop and Korobilis, 2009)
— Normal-Inverse Wishart prior (Banbura et al, 2010)

Simulation Design: Sparse high-dimensional : ¢ =10,p =2, T =50
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Simulation Study: Results

Method Mean Absolute Estimation Error
Sparse 0.041
Bayesian: Minnesota 0.044
Bayesian: Normal-Inverse Wishart 0.077
Least Squares 0.157
Restricted LS 0.121
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Commodity prices: log volatilities (weekly data)
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Application: Volatility spill-overs

Network on the AutoRegressive coefficients

Diebold and Yilmaz (2015)
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-
Granger Causality

Time series i is Granger Causing time series j

!

Time series i it has incremental predictive power in forecasting series j

!

In the network there is an arrow going from node / to node j

Granger Causality test in high dimensions: Wilms, Gelper, Croux, 2016
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|
Network on the precision matrix
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