Sparse estimation of Vector Autoregressive Models

Christophe Croux

KU Leuven

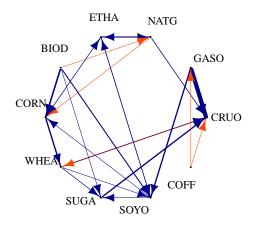
Limassol, 9 April 2017

(joint work with Ines Wilms, Luca Barbaglia, Sarah Gelper)

10-dimensional time series



Network



Vector Autoregressive Model (VAR)

Two stationary time series $y_{1,t}$ and $y_{2,t}$.

VAR(1) in dimension q = 2:

$$\begin{cases} y_{1,t} = \Gamma_{1,11} y_{1,t-1} + \Gamma_{1,12} y_{2,t-1} + e_{1t} \\ y_{2,t} = \Gamma_{1,21} y_{1,t-1} + \Gamma_{1,22} y_{2,t-1} + e_{2t} \end{cases}$$

Covariance matrix of $(e_{1t}, e_{2t})'$ is Σ .

Vector notation: $\mathbf{y}_t = \Gamma_1 \mathbf{y}_{t-1} + \mathbf{e}_t$,

The VAR model

Let \mathbf{y}_t be a q-dimensional stationary time series

Vector Autoregressive Model of order *p*:

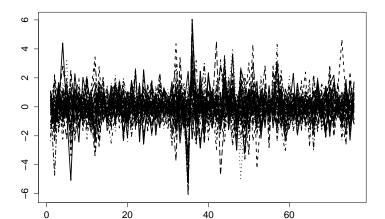
$$\mathbf{y}_t = \Gamma_1 \mathbf{y}_{t-1} + \Gamma_2 \mathbf{y}_{t-2} + \ldots + \Gamma_p \mathbf{y}_{t-p} + \mathbf{e}_t ,$$

- Matrices Γ_i are autoregressive parameters
- \mathbf{e}_t error with covariance matrix $\mathbf{\Sigma} = \mathbf{\Omega}^{-1}$.
- Standard estimation procedure: OLS equation by equation.

Example: a Market Response Model

Sales, promotion and prices for 17 product categories: q = 51

T = 77 weekly observations



VAR model for $q = 3 \times 17 = 51$ time series

- One lag
 - $-1 \times (q \times q) = 2601$ regression parameters
 - 1326 unique elements in Σ
- Two lags
 - $-2 \times (q \times q) = 5202$ regression parameters
 - 1326 unique elements in ∑
- → Explosion of number of parameters

The VAR model: Overparametrization

ML estimators will be

- Not computable
- Inaccurate

Sparse estimation \equiv many estimated parameters equal to zero

- Suitable if T is small relative to the number of parameters
- Easier to interpret
- Automatic variable selection
- Better estimation and prediction performance

Sparse Estimation: Lasso

In the multiple linear regression model

$$y = \beta_1 x_1 + \beta_2 x_2 + \ldots + \beta_k x_k + \varepsilon$$

Minimization problem

$$\hat{\beta} = \underset{\beta}{\operatorname{argmin}} (y - X\beta)'(y - X\beta) + \lambda \sum_{I=1}^{k} |\beta_I|.$$

Tibshirani (1996)

Lasso for the VAR model

- Multiple equations
 - Partial correlation between the error terms
 - \rightarrow Glasso of Friedman et al. (2008)
- Dynamic nature of the model
 - Selecting a time series into one of the equations = selecting the variable and all its lags
 - → Group lasso (Yuan and Lin, 2006)

Penalized ML estimation

Rewrite the VAR in matrix notation:

$$\boldsymbol{Y}=\boldsymbol{Y}_{\boldsymbol{L}}\boldsymbol{\Gamma}+\boldsymbol{E},$$

where

•
$$Y = (y_{p+1}, \dots, y_T)'$$

$$ullet$$
 $\mathbf{Y}_{\mathsf{L}} = (\mathbf{X}_{p+1}, \dots, \mathbf{X}_{\mathcal{T}})'$ with $\mathbf{X}_t = (\mathbf{y}_{t-1}', \dots, \mathbf{y}_{t-p}')'$

$$\bullet \ \Gamma = (\Gamma_1, \ldots, \Gamma_p)'$$

•
$$\mathbf{E} = (e_{p+1}, \dots, e_T)'$$
.

Penalized ML estimation (cont.)

Penalized negative log likelihood:

$$\begin{split} (\widehat{\pmb{\Gamma}}, \widehat{\pmb{\Omega}}) &= \underset{\pmb{\Gamma}, \pmb{\Omega}}{\operatorname{argmin}} \quad \frac{1}{T} \mathrm{tr} \Big((\pmb{\mathsf{Y}} - \pmb{\mathsf{Y}}_{\mathsf{L}} \pmb{\Gamma}) \pmb{\Omega} (\pmb{\mathsf{Y}} - \pmb{\mathsf{Y}}_{\mathsf{L}} \pmb{\Gamma})' \Big) - \log |\pmb{\Omega}| \\ &+ \lambda_1 \sum_{g=1}^G ||\gamma_g||_2 + \lambda_2 \sum_{k \neq k'} |\Omega_{kk'}|, \end{split}$$

with

- γ_g a subvector of Γ
- $G = q^2$ total number of groups.
- $\Omega = \Sigma^{-1}$ the precision matrix

Algorithm

Solving for $\Gamma | \Omega$:

$$\widehat{\boldsymbol{\Gamma}}|\boldsymbol{\Omega} = \underset{\boldsymbol{\Gamma}}{\operatorname{argmin}} \ \frac{1}{T} \operatorname{tr} \Big((\mathbf{Y} - \mathbf{Y}_{\mathsf{L}} \boldsymbol{\Gamma}) \boldsymbol{\Omega} (\mathbf{Y} - \mathbf{Y}_{\mathsf{L}} \boldsymbol{\Gamma})' \Big) + \lambda_1 \sum_{g=1}^G ||\gamma_g||_2.$$

→ groupwise lasso

Algorithm (cont.)

Solving for $\Omega | \Gamma$:

$$\widehat{\boldsymbol{\Omega}}|\boldsymbol{\Gamma} = \underset{\boldsymbol{\Omega}}{\operatorname{argmin}} \quad \frac{1}{\mathcal{T}} \mathrm{tr} \Big((\boldsymbol{\mathsf{Y}} - \boldsymbol{\mathsf{Y}}_{\mathsf{L}} \boldsymbol{\Gamma}) \boldsymbol{\Omega} (\boldsymbol{\mathsf{Y}} - \boldsymbol{\mathsf{Y}}_{\mathsf{L}} \boldsymbol{\Gamma})' \Big) - \log |\boldsymbol{\Omega}| + \lambda_2 \sum_{k \neq k'} |\Omega_{kk'}|.$$

→ penalized inverse covariance estimation (glasso)

Selection of tuning parameters

In the iteration step $\Gamma | \Omega$, select λ_1 to minimize

$$BIC_{\lambda_1} = -2 \log L_{\lambda_1} + k_{\lambda_1} \log(T),$$

- ullet L_{λ_1} is the estimated likelihood using λ_1
- ullet k_{λ_1} is the number of non-zero estimated regression coefficients.

In the iteration step $\Omega | \Gamma$, select λ_2 analogously.

Networks from the VAR coefficients $\widehat{\Gamma}$.

Network with q nodes. Each node corresponds with a time series.

• draw an edge from node i to node j if

$$\sum_{p=1}^{P} |\widehat{\Gamma}_{p,ji}| \neq 0$$

Additionally (if p = 1)

- the edge width is the size of the effect
- the edge **color** is the sign of the effect (blue if positive, red if negative)

References

- Hsu, Hung, and Chang (2008), "Subset selection for vector autoregressive processes using lasso," *Computational Statistics and Data Analysis*.
- Rothman, Levina, and Zhu (2010), "Sparse multivariate regression with covariance estimation," Journal of Computational and Graphical Statistics.
- Basu and Michailidis (2015), "Regularized estimation in sparse high-dimensional time series models," Annals of Statistics.
- Gelper S., Wilms I. and Croux C. (2016), "Identifying demand effects in a large network of product categories," *Journal of Retailing*

What about Bayesian statistics?

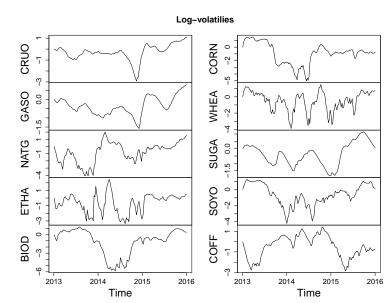
- Bayesian methods
 - Minnesota prior (Koop and Korobilis, 2009)
 - Normal-Inverse Wishart prior (Banbura et al, 2010)

Simulation Design: Sparse high-dimensional : q = 10, p = 2, T = 50

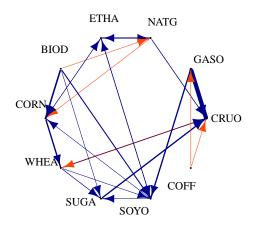
Simulation Study: Results

Method	Mean Absolute Estimation Error
Sparse	0.041
Bayesian: Minnesota	0.044
Bayesian: Normal-Inverse Wishart	0.077
Least Squares	0.157
Restricted LS	0.121

Commodity prices: log volatilities (weekly data)



Network on the AutoRegressive coefficients



Granger Causality

Time series i is Granger Causing time series j

Time series i it has incremental predictive power in forecasting series j

In the network there is an arrow going from node i to node j

Granger Causality test in high dimensions: Wilms, Gelper, Croux, 2016

Network on the precision matrix

