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Fuzzy clustering: why?

� The hard (crisp) approach to clustering may fail because
its black-and-white nature is too rigid to handle the real-life
complexity.

� Objects with intermediate characteristics between two
clusters are forced to belong to only one cluster.



Motivation example

5 10 15

2
3

4
5

6
7

8



Motivation example: hard clustering

  



Fuzzy clustering

� Objects are assigned to the clusters according to a certain
degree (grey-scale nature). It is called membership degree
and takes values in [0,1].



Fuzzy clustering: why?

F. Klawonn, R. Kruse, R. Winkler (2015). Fuzzy clustering: more
than just fuzzification. Fuzzy Sets and Systems 281, 272-279.

� The initial idea of extending the classical k-means
clustering technique to an algorithm that uses membership
degrees instead of crisp assignments of data objects to
clusters led to the invention of a large variety of new
fuzzy clustering algorithms.

� It has been demonstrated that the use of membership
degrees for these algorithms - although it is not necessary
from the theoretical point of view - is essential for these
algorithms to function in practice.



Fuzzy k -Means (FkM) (Bezdek, 1974)

min
U,H

JFkM =
n
∑

i=1

k
∑

g=1
um

ig d2 (xi ,hg
)

=
n
∑

i=1

k
∑

g=1
um

ig

∥∥xi −hg
∥∥2

s.t. uig ∈ [0,1] ,
k
∑

g=1
uig = 1

where
� X = [xij ]: data matrix of order (n× t)

� U = [uig]: membership degree matrix of order (n×k )

� H = [hgj ]: prototype matrix of order (k × t)

� m(> 1): parameter of fuzziness (usually m = 2)
with

n: number of objects
t : number of variables
k : number of clusters



FkM: iterative solution (i)

Lagrangian function

L =
n

∑
i=1

k

∑
g=1

um
ig d2 (xi ,hg

)
−λ

(
k

∑
g=1

uig−1

)

We compute the partial derivatives of L w.r.t. uig and λ and we
set them equal to 0:

∂L
∂uig

= mum−1
ig d2

ig−λ = 0

∂L
∂λ

=
k

∑
g=1

uig−1 = 0



FkM: iterative solution (ii)

By the usual calculations we then get

uig =

(
λ

md2
ig

) 1
m−1

and, taking into account that
k
∑

g=1
uig−1 = 0,

(
λ

m

) 1
m−1

=
1

k
∑

g′=1

(
1

d2
ig′

) 1
m−1



FkM: iterative solution (iii)

� uig = 1

k
∑

g′=1

(
d2(xi ,hg)

d2(xi ,hg′)

) 1
m−1

Fixing uig we obtain hg by setting equal to 0 the partial
derivatives of L w.r.t. hg :

∂L
∂hg

= 2
n

∑
i=1

um
ig dig = 0

� hg =

n
∑

i=1
um

ig xi

n
∑

i=1
um

ig



FkM: iterative algorithm

Step 0. Generate randomly a feasible membership degree
matrix U(0).

Step 1. Update the centroid matrix H(t) keeping fixed
U(t−1).

Step 2. Update the fuzzy membership degree matrix U(t),
keeping fixed H(t).

Step 3. Check convergence. If the convergence condition
is not satisfied, go to Step 1.



Convergence criteria

1. Compare the membership degree matrices:

‖U(t+1)−U(t)‖< ε

(ε is a fixed value).
2. Compare the centroid matrices(

k

∑
g=1
‖h(t+1)

g −h(t)
g ‖2

) 1
2

< ε

3. Compare the values of the objective function:

J(t+1)−J(t) < ε



But...

� m is a “strange” parameter.

� The centroids are computed as weighted means of the
data with weights equal to um

ig rather than uig .



Entropic Fuzzy k -Means
(Li and Mukaidono, 1995, 1999)

min
U,H

JFkM.ent =
n
∑

i=1

k
∑

g=1
uigd2 (xi ,hg

)
+ p

n
∑

i=1

k
∑

g=1
uig loguig

s.t. uig ∈ [0,1] ,
k
∑

g=1
uig = 1

Iterative solution

uig =
exp
(
− d2(xi ,hg)

p

)
k
∑

g′=1
exp

(
−

d2(xi ,hg′)
p

) hg =

n
∑

i=1
uigxi

n
∑

i=1
uig

� p is is the degree of fuzzy entropy and it is called the
“temperature” in statistical physics.



The EM algorithm for mixture distributions

� A family of mixtures of k density functions contains density
of the form

p(x|θ) =
k

∑
g=1

αgpg(x|θ g)

� Consider the problem of finding a local minimizer of the
function D(W ,θ)

D(W ,θ) =
n

∑
i=1

k

∑
g=1

wig
(
logwig− logαgpg(xi |θ g)

)



EM and Entropic FkM (Hathaway, 1986)

D(W ,θ) = E(W ) + H(W ,θ)

E(W ) =
n

∑
i=1

k

∑
g=1

wig logwig

H(W ,θ) =
n

∑
i=1

k

∑
g=1

wig log
(
1/(αgpg(xi |θ g))

)
� E(W ) is the negative sum of the entropies.

� H(W ,θ) can be viewed as a weighted distances function,
with log

(
1/(αgpg(xi |θ g))

)
representing a probabilistic

measure of the distance between xi and subpopulation g.



In case of non-spherical clusters?

Problem: The FkM and the entropic FkM produce only
clusters with spherical shape...



Non-spherical clusters: example 1

[
µ1
µ2

]
=

[
0 0
0 3

]
Σ1 = Σ2 =

[
4 0
0 0.3

]
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Non-spherical clusters: example 2
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]

Σ =

[
302 146.3

146.3 185.1

]
cor(X1,X2) = 0.62

• non-spherical shapes...high correlations!!!



Example 1: FkM - results
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Example 2: FkM - results
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FkM with covariance matrices
(Gustafson & Kessel, 1979)

min
U,H,F1···Fk

JFkM.gk =
n
∑

i=1

k
∑

g=1
um

ig d2
M

(
xi ,hg

)
s.t. uig ∈ [0,1] ,

k
∑

g=1
uig = 1, |Fg |= ρg > 0

where

� d2
M

(
xi ,hg

)
=
(
xi −hg

)′
Fg
(
xi −hg

)
is the Mahalanobis

distance
� Fg : symmetric and definite positive

� ρg : volume parameter (usually equal to 1)



FkM.gk: iterative solution

uig = 1

k
∑

g′=1

(
d2
M(xi ,hg)

d2
M(xi ,hg′)

) 1
m−1

hg =

n
∑

i=1
um

ig xi

n
∑

i=1
um

ig

F−1
g =

Sg

(det(Sg))1/t

where

Sg =

n
∑

i=1
um

ig

(
xi −hg

)(
xi −hg

)′
n
∑

i=1
um

ig

is the fuzzy covariance matrix of the g-th cluster



Entropic - FkM - GK
(Ferraro e Giordani, 2013)

min
U,H,F1···Fk

JFkM.gk.ent =
n
∑

i=1

k
∑

g=1
uigd2

M

(
xi ,hg

)
+ p

n
∑

i=1

k
∑

g=1
uig loguig

s.t. uig ∈ [0,1] ,
k
∑

g=1
uig = 1, |Fg |= ρg > 0

where

� d2
M

(
xi ,hg

)
=
(
xi −hg

)′
Fg
(
xi −hg

)
is the Mahalanobis

distance



FkM.gk.ent: iterative solution

uig =
exp
(
−

d2
M(xi ,hg)

p

)
k
∑

g′=1
exp

(
−

d2
M(xi ,hg′)

p

) hg =

n
∑

i=1
uigxi

n
∑

i=1
uig

F−1
g =

Sg

(det(Sg))1/t

where

Sg =

n
∑

i=1
uig
(
xi −hg

)(
xi −hg

)′
n
∑

i=1
uig

is the fuzzy covariance matrix of the g-th cluster



Example 1: FkM.gk.ent - results
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Example 2: FkM.gk.ent - results
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Unbalanced clusters
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Figure: Example of 2 clusters of size 200 and 10, respectively



FkM: results
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Figure: Example of 2 clusters of size 200 and 10, respectively



Fuzzy clustering with polynomial fuzzifier
(Klawonn and Höppner, 2003)

� In FkM the fuzzifier m is used to control the overlapping
clusters.

� Furthermore, it leads to assign the objects to all clusters
with non-zero membership degrees, even when they are
very close to the prototypes.

In order to overcome this problem Klawonn and Höppner
(2003) propose to use an alternative fuzzifier function: the
polynomial fuzzifier function.

• In general, a fuzzifier function is a continuous, strictly
increasing function f : [0,1]−→ [0,1] with f (0) = 0 and
f (1) = 1.

• In the FkM case, f (uig) = um
ig .



Fuzzy k -Means with polynomial fuzzifiers (FkM.pf)
(Klawonn & Höppner, 2003)

min
U,H

JFkM.pf =
n
∑

i=1

k
∑

g=1
f (uig)d2 (xi ,hg

)
s.t. uig ∈ [0,1] ,

k
∑

g=1
uig = 1

where
� f (uig) =

(
1−β

1+β
u2

ig + 2β

1+β
uig

)
is the polynomial fuzzifier

fuction
� β ∈ [0,1]

for β = 0 we obtain the FkM with parameter m equal to 2
for β = 1 the hard k -means



FkM.pf: results
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Figure: Example of 2 clusters of size 200 and 10, respectively



FkM.pf: iterative solution

� uig = 1
1−β

1 + β (k −1)
k
∑

g′=1

d2(xi ,hg)
d2
(

xi ,hg′
) −

β

1−β

� hg =

n
∑

i=1
f (uig)xi

n
∑

i=1
f (uig)



FkM.pf: algorithm

� The constraint of non-negative membership values is not
naturally fulfilled as it is in FkM.

� To avoid this, in the iterative process we have to take into
account the constraint uig ≥ 0.

� In the membership updates only the prototypes fulfilling
those conditions are included. The membership for all
other prototypes is set to zero. Hence the fuzzy
membership value is only computed for a subset of
prototypes.



Fuzzy k -Medoids (Krishnapuram et al., 2001)

min
U,M

JFkM.med =
n
∑

i=1

k
∑

g=1
um

ig d2 (xi ,mg
)

s.t. uig ∈ [0,1] ,
k
∑

g=1
uig = 1,

{
mg ,g = 1, . . . ,k

}
⊂{xi , i = 1, . . . ,n} .

where
� {mg ,g = 1, . . . ,k} ⊆ {xi , i = 1, . . . ,n}

the medoids are a subset of the observed objects

The fuzzy k -medoids algorithm is usually more robust than the
standard FkM algorithm.



FkM.med: iterative algorithm

Step 0a. Initialize the medoid matrix M(0).
Step 1. Update the fuzzy membership degree matrix U(t),

keeping fixed M(t−1), by means of

uig =
1

k
∑

g′=1

(
d2(xi ,mg)
d2(xi ,mg′)

) 1
m−1

Step 2. Update the medoid matrix M(t), keeping fixed U(t),
by using

q = argminn
i ′=1

n

∑
i=1

um
ig d2(xi ,xi ′)

g = 1, ...,k , mg = xq.
Step 3. Check convergence. If the convergence condition

is not satisfied, go to Step 1.



Initialization

1. Pick all the medoid candidates randomly.

2. Pick the first candidate as the object that is most central to
the data set, and then pick each successive one by one in
such a way that each one is most dissimilar to all the
medoids that have already been picked (see, for more
details, Krishnapuram et al., 2001).

3. Pick the first medoid candidate randomly. The rest of the
medoids are selected the same way as in Initialization 2.



Choice of the fuzziness parameter m

� In the FkM-type algorithms the usual choice is m in
[1.5,2].

� Since the medoid has always a membership of one in the
cluster, raising its membership to the power m has no
effect. Thus, when m is high, the mobility of the medoids
from iteration to iteration may be lost. For this reason, we
recommend a value between 1 and 1.5 for m for FkM.med.



FkM-type algorithms and Outliers

� The performance of k -means and fuzzy k -means
algorithms is affected by the outliers.

� The problem is due to the constraint on the membership
degrees. The sum of the membership degrees of each
object to the groups is equal to 1.

� In this way, also the outliers are assigned to the groups
and the centroids depend on those points.



5 10 15

2
4

6
8

10
12

14
16

5 10 15

2
4

6
8

10
12

14
16

(0.5, 0.5)

(0.5, 0.5)

(0.5, 0.5)



“Noise” cluster (Davé, 1991)

In presence of outliers, a possible approach is to consider an
additional cluster, called noise cluster. If an object is
recognized to be an outlier, then it is assigned to the noise
cluster with a high membership degree.

“Noise” prototype
A universal entity, h(k+1), such that it is always at the same
distance from every point in the data-set:

d(xi ,h(k+1)) = δ , ∀i .

The above definition does not tell us what the distance is. It
simply says that all the points are at the same distance from
the noise prototype.



FkM with noise cluster (Davé, 1991)

min
U,H

JFkM.noise =
n
∑

i=1

k
∑

g=1
um

ig d2 (xi ,hg
)

+
n
∑

i=1
δ 2

(
1−

k
∑

g=1
uig

)m

s.t. uig ∈ [0,1] ,
k+1
∑

g=1
uig = 1.

where

� δ 2: squared distance of each point to the noise cluster



What do we get?

� A partition with k + 1 clusters: the first k standard clusters
are homogeneous, whereas the noise cluster contains all
the outliers and is usually not formed by objects with
homogeneous features.



FkM.noise: iterative solution

� uig = 1

k
∑

g′=1

(
d2(xi ,hg)

d2(xi ,hg′)

) 1
m−1

+

(
d2(xi ,hg)

δ2

) 1
m−1

, (g = 1, · · · ,k)

� ui(k+1) = 1−
k
∑

g=1
uig

� hg =

n
∑

i=1
um

ig xi

n
∑

i=1
um

ig

, (g = 1, · · · ,k)



Choice of δ

� If the value of δ is chosen to be very small, then most of
the points will get classified as noise points.

� If the value of δ is large, then most of the points will be
classified into clusters other than the noise cluster.

� A possible choice is average of the interpoint distances:

δ
2 = λ


k
∑

g=1

n
∑

i=1
d2

ig

nk





Cluster validity

� A value representing a measure of the partition quality is
assigned to the output of a clustering algorithm.

� A cluster validity measure is useful to find the optimal
values for m and k .

Two types of cluster validity measure:

Fuzziness measure
Compactness and separation measure



Fuzziness measure

To evaluate the partition fuzziness, it is necessary to synthesize
the information contained in the membership degree matrix in
one value. This value indicates the degree of accuracy of the
assignment of units to clusters.

Partition coefficient
Partition entropy
Modified partition coefficient



Partition coefficient (Bezdek, 1974)

PC(k) =
n

∑
i=1

k

∑
g=1

(uig)2

n
.

� The range of variation of PC is [1/k ,1]:
• 1/k if all the membership degrees are equal to 1/k , that is,

in case of maximum fuzziness of the partition,
• 1 if and only if all the membership degrees are equal to 0 or

1 (hard partition).

� The optimal number of cluster k is obtained maximizing
PC w.r.t. k .

� The disadvantages of the partition coefficient are its
monotonic tendency and lack of direct connection to some
property of the data themselves.



Partition entropy (Bezdek, 1974)

PE(k) =−
n

∑
i=1

k

∑
g=1

uig loga(uig)

n
.

� The range of variation of PE is [0, logk ]:
• 0 if and only if all the membership degrees are equal to 0 or

1,
• logk if all the membership degrees are equal to 1/k , that is,

in case of maximum fuzziness of the partition.

� The optimal number of cluster k is obtained minimizing
PE w.r.t. k .

� As for PC, there is a monotonic tendency.



Modified partition coefficient (Davé, 1996)

To avoid the monotonic tendency a modified partition coefficient
(MPC) has been introduced by Davé. It consists in a linear
transformation of PC:

MPC(k) = 1− k
k −1

(1−PC(k)) .

� The range of variation of MPC is [0,1]:
• 0 in case of maximum fuzziness of the partition,
• 1 in case of crisp partition.



Compactness and Separation measures

Xie and Beni index
Silhouette
Fuzzy silhouette



Xie and Beni index (1991)

The Xie and Beni (XB) index is a popular fuzzy cluster validity
measure defined as

XB(k) =
σ2

W

d2
min

=

n
∑

i=1

k
∑

g=1
u2

igd2 (xi ,hg
)

nmin
g,g′

d2(hg ,hg′)
.

� σ2
W = 1

n

n
∑

i=1

k
∑

g=1
u2

igd2 (xi ,hg
)

is the total within-cluster

distance, that is the compactness of the fuzzy partition.
� d2

min = min
g,g′

d2(hg ,hg′) is a separation measure.



Xie and Beni index: a generalized version

XB(k) =
σ2

W

d2
min

=

n
∑

i=1

k
∑

g=1
um

ig d2 (xi ,hg
)

nmin
g,g′

d2(hg ,hg′)
.

� The compactness is defined as the distance between the
objects and the centroids, weighted with um

ig .

� The separation is defined as the minimum distance
between the centroids.

� The optimal partition (maximum compactness and
separation), is obtained minimizing the index.

� The drawback is the monotonic tendency.



Silhouette
(Kaufman e Rousseeuw, 1990)

For each object i the silhouette index is defines as:

si(k) =
bi −ai

max(bi ,ai)
.

� a(i) is the average distance of object i to all other objects
belonging to the same cluster.

� b(i) is the minimum average distance of object i to all
objects belonging to another cluster.

� si(k) ranges in [−1,1].



Silhouette index for each object

� If si tends to 1 the object i is well assigned to the
corresponding cluster. This happens when bi is high and ai
is small.

� In general, if ai < bi then si(k) > 0. On the other hand, a
negative value of si(k) indicates that object i is not well
assigned to the cluster.



Silhouette index for the partition

The (crisp) silhouette (CS) is defined as the average of si over
i = 1, · · · ,n

CS(k) =
1
n

n

∑
i=1

si(k).

The optimal value of k is obtained maximizing CS.



Fuzzy Silhouette
(Campello e Hruschka, 2006)

Since CS does not take into account the membership degree
matrix U, a fuzzy version of the index has been introduced:

FS(k) =

n
∑

i=1
(uig−uig′)

αsi(k)

n
∑

i=1
(uig−uig′)α

where
• uig and uig′ are the first and second largest elements of the

i-th row of the fuzzy partition matrix, respectively.
• α is the weight (usually α = 1).

The optimal value of k is obtained maximizing FS.



Visualization techniques (i)

Since the cluster validity indices reduce the information of a
large dataset to a single value, it is necessary to consider
visualization techniques for fuzzy clustering, involving different
information about the results.

� VIFCR (Klawon et al., 2003)

A chart diagram of the scaled frequency related to the
membership degrees

1
n ∑

(i ,g):a≤uig<b

(
k(k −2)

k −1
uig +

k
k −1

)
,

with a,b ∈ [0,1] and a < b.



Visualization techniques (ii)

A diagram whose coordinates, for each object (point) xi ,
are

• uig1 : the highest membership degree of xi
• uig2 : the second highest membership degree of xi

All the points are included in the triangle of vertices (0,0)
(noise data), (0.5,0.5) (ambiguous data) and (1,0) (crisp
assignments).
A diagram whose coordinates, for each object (point) xi ,
are

(dig ,uig)

The ideal situation is to obtain high membership degrees
for small distances and low membership degrees for large
distances.



Visualization techniques (iii)

� VAT (Bezdek & Hataway, 2002)
• The matrix of dissimilarities between the objects, R = [rij ], is

considered.
• The matrix is reordered obtaining R∗.
• Its image I(R∗) is displayed.

The number of dark blocks along its main diagonal
represents the number of clusters and the size of each
block the approximate size of the cluster.



Visualization techniques (iv)

� VCV (Hathaway & Bezdek, 2003)
• First of all the clusters are ordered and the objects in each

cluster are ordered by taking into account the membership
degrees.

• Then, the dissimilarities rij between object xi and xj are
taken into account.

• The following dissimilarities are used:

r ∗ij = min
1≤g≤k

{dig + djg},

where dig = d(xi ,hg).
• Finally, the information is displayed as an intensity image

I(R∗).



Visualization techniques (v)

� VCV2 (Huband & Bezdek, 2008)
• The membership degrees matrix U is reordered using the

index array of R∗ obtained by means of the VAT.
• The resulting matrix Û is transformed to the square matrix

U∗ = 1n−
(

ÛT Û/max{
(

ÛT Û
)

ij
}
)
.

• The display image I(U∗) is compared with I(R∗) to check
the adequacy of the number of clusters.



Software
Starting from FkM, fuzzy clustering has received an increasing
attention by researchers from several fields.

Nonetheless, popular commercial software solutions (SAS,
SPSS, ...) do not contain routines for fuzzy clustering. Just a
few exceptions (limited to FkM): MATLAB and R.

R package fclust, version 1.1.2

Suit of functions for fuzzy clustering analysis (algorithms,
cluster validity indices and visualization tools).

B http://cran.r-project.org/web/packages/fclust/index.html

M.B. Ferraro, P. Giordani (2015). A toolbox for fuzzy clustering
using the R programming language. Fuzzy Sets and Systems
279, 1-16.



The package



fclust

Main features of the package

� 36 functions + 4 datasets
� Most relevant functions for algorithms:

FKM: standard FkM algorithm
FKM.gk: Gustafson and Kessel extension of FkM
FKM.med: fuzzy k -medoids algorithm
FKM.noise: FkM with noise cluster

� Most relevant functions for cluster validity indices:
PC: partition coefficient
PE: partition entropy (PE);
XB: Xie and Beni index (XB)
SIL.F: fuzzy silhouette (FS)

� Interactive fuzzy clustering analysis by means of the
function Fclust



Input arguments (for the algorithms)

� X: object of class matrix or data.frame
� k: number of clusters (default: 2)
� m: parameter of fuzziness (default: 2)
� stand: if stand=1, the clustering algorithm is run using

standardized data (default: no standardization)
� RS: number of (random) starts (default: 1)
� startU: rational starting point for the membership degree

matrix U (default: no rational start)
� conv: convergence criterion (default: 1e-9)
� maxit: maximum number of iterations (default: 1e+6)
� ...



Output values (for the algorithms)
Object of class fclust. List with the following components:
� U: membership degree matrix
� H: prototype matrix
� clus: matrix containing the indices of the clusters where

the objects are assigned (column 1) and the associated
membership degrees (column 2)

� medoid: vector containing the indices of the medoid
objects

� value: vector containing the loss function values for the
RS starts

� cput: vector containing the computational times (user
times) for the RS starts

� Xca: data used in the clustering algorithm (standardized
data if stand=1)

� X: raw data
� call: matched call
� ...



McDonald’s data

McDonald’s USA Nutrition Facts (81 menu items, no beverages)
> library("fclust")
> data(Mc)

Variables

� numeric:
Serving Size, Calories, Total Fat (g), Saturated
Fat (g), Trans Fat (g), Cholesterol (mg), Sodium
(mg), Carbohydrates (g), Dietary Fiber (g), Sugars
(g), Protein (g), Vitamin A (%DV), Vitamin C (%DV),
Calcium (%DV), Iron (%DV)

� factor:
Type (levels: Burgers & Sandwiches, Chicken,
Breakfast, Salads, Snacks & Sides, Desserts/Shakes)



Aim of the analysis

Clustering of the menu items (scores normalized w.r.t.
Serving Size) to discover whether a cluster structure exists
(i.e. similar menu items in terms of their nutrition facts) and, in
particular, whether a six-cluster structure is visible emerging a
link between the variable type and the typology of nutrition
facts.

Standard FkM algorithm (function FKM):

> fkm <- FKM(X = Mc[,1:(ncol(Mc)-1)], k = c,
m = 1.5, stand = 1, RS = 10)



Number of clusters
FS index for values of k = 2, . . . ,10:
FS vector containing the FS values (script omitted)
> round(FS, 2)

k = 2 k = 3 k = 4 k = 5 k = 6

0.52 0.49 0.48 0.55 0.62

k = 7 k = 8 k = 9 k = 10

0.64 0.57 0.62 0.61

Solution with k = 7 clusters (two low-size clusters)

> fkm7 <- FKM(X = Mc[,1:(ncol(Mc)-1)], k = 7,
m = 1.5, stand = 1, RS = 10)

> cl.size(fkm7$U)
Cl 1 Cl 2 Cl 3 Cl 4 Cl 5 Cl 6 Cl 7

24 12 4 13 15 10 3



Data Visualization: VAT
Function VAT(Xca)
> VAT(fkm7$Xca)

VAT



FkM with k = 6 clusters
Trying to avoid low-size clusters, we move to k = 6 solution
(FS = 0.62)

> fkm6 <- FKM(X = Mc[,1:(ncol(Mc)-1)], k = 6,
m = 1.5, stand = 1, RS = 10)

> cl.size(fkm6$U)
Cl 1 Cl 2 Cl 3 Cl 4 Cl 5 Cl 6

12 26 10 15 5 13

Comparison between the solutions with k = 6 and k = 7
> table(fkm6$clus[,1], fkm7$clus[,1])

Cl 1 Cl 2 Cl 3 Cl 4 Cl 5 Cl 6 Cl 7
Cl 1 0 12 0 0 0 0 0
Cl 2 24 0 0 0 0 0 2
Cl 3 0 0 0 0 0 10 0
Cl 4 0 0 0 0 15 0 0
Cl 5 0 0 4 0 0 0 1
Cl 6 0 0 0 13 0 0 0



Interpretation of the clusters (i)

> table(Mc$Type, fkm6$clus[,1])
Cl 1 Cl 2 Cl 3 Cl 4 Cl 5 Cl 6

Breakfast 12 5 0 1 1 0
Burgers & Sandwiches 0 10 0 0 0 12
Chicken 0 4 0 0 0 0
Desserts/Shakes 0 0 0 12 4 0
Salads 0 0 10 0 0 0
Snacks & Sides 0 7 0 2 0 1

Clusters

Cluster 1 xxx Breakfast xxx (Bacon, Egg & Cheese
Biscuit)

Cluster 3 Salads (Premium Southwest Salad
with Grilled Chicken)



Interpretation of the clusters (ii)

Cluster 4
Desserts/Shakes

(ice-creams and fruits)
(McFlurry with OREO

Cookies)

Cluster 5
Desserts/Shakes
(cookies and pies)

(Oatmeal Raisin Cookie)

More complex interpretation for Clusters 2 and 6
� Burgers & Sandwiches assigned to Cluster 6 (although

no one-to-one relationship)
� Cluster 2 contains food items of different types

Nonetheless, by further inspecting the food items of type
Burgers & Sandwiches assigned to Cluster 2 (the code is
omitted), a clear interpretation of Clusters 2 and 6 can be found



Interpretation of the clusters (iii)
Findings
� Chicken-made food items belong to Cluster 2 along with

two other food items with fish and pork
� All the food items assigned to Cluster 6 contain beef
� 6 (out of 7) food items of type Snacks & Sides assigned

to Cluster 2 are chicken-based

Hence

Cluster 2 “chicken-made food items” (Premium Crispy
Chicken Ranch)

Cluster 6
“beef-made burgers and

sandwiches”
(McDouble)



Centroids (i)

> fkm6$Hraw <- Hraw(fkm6$X, fkm6$H)

Breakfast items have the highest values of Cholesterol
(mg) and Sodium (mg) (a lot of items with eggs)

“chicken-made food items” presents average values for the
nutrition facts except for high values of Sodium (mg) and
the lowest values of Vitamin A (%DV)

Salads are the most healthy items (the lowest values of
Calories, Total Fat (g), Saturated Fat (g) and
Trans Fat (g) and the highest values of Vitamin A
and Vitamin C (%DV))



Centroids (ii)

Ice-creams and fruits (Desserts/Shakes) present
the lowest values of Cholesterol (mg), Sodium (mg),
Dietary Fiber (g), Protein (g) and Iron (%DV)
and the highest values of Calcium (%DV)

Cookies and pies (Desserts/Shakes) are the less
dietetic ones: the highest amounts of Calories,
Total Fat(g), Saturated Fat (g), Carbohydrates (g),
Sugars(g). Also the highest values of Iron (%DV) and
the lowest values of Calcium (%DV)

“beef-made burgers and sandwiches” present
the highest values of Trans Fat (g) and Protein (g)



Membership degrees (examples)
Oatmeal Raisin Cookie (Cluster 5 with membership degree = 0.99)

Baked Hot Apple Pie (Cluster 5 with membership degree = 0.53)

Mean values (the most relevant variables)
> round(apply(fkm6$X[,c(1,2,3,7,9,13,14)],2,mean),2)

Calories Total Fat Saturated Fat Carbohydrates Sugars Iron (%DV) Calcium(%DV)
2.33 0.11 0.04 0.25 0.08 0.09 0.08

Centroid of Cluster 5 (the most relevant variables)
> round(fkm6$Hraw[5,c(1,2,3,7,9,13,14)],2)

Calories Total Fat Saturated Fat Carbohydrates Sugars Iron (%DV) Calcium(%DV)
4.35 0.19 0.09 0.59 0.33 0.04 0.16

Oatmeal Raisin Cookie (the most relevant variables)
> round(fkm6$X[‘‘Oatmeal Raisin Cookie’’,c(1,2,3,7,9,13,14)],2)

Calories Total Fat Saturated Fat Carbohydrates Sugars Iron (%DV) Calcium(%DV)
4.55 0.18 0.08 0.67 0.39 0.06 0.18

Baked Hot Apple Pie (the most relevant variables)
> round(fkm6$X[‘‘Baked Hot Apple Pie’’,c(1,2,3,7,9,13,14)],2)

Calories Total Fat Saturated Fat Carbohydrates Sugars Iron (%DV) Calcium(%DV)
3.25 0.17 0.09 0.42 0.17 0.03 0.08



Results Visualization: VCV2
Function VCV2(Xca, U, which)
> VCV2(fkm6$Xca, fkm6$U, 2)

VCV2



Results Visualization: VIFCR
Function VIFCR(fclust.obj, which)
> VIFCR(fkm6,2)
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Unemployment data

The data set contains the unemployment rates and shares of
32 European countries in 2011 (source: Eurostat).
> library("fclust")
> data(unemployment)

Variables

� numeric:
• Total.Rate: the percentage of unemployed persons

aged 15-74 in the economically active population
• Youth.Rate: the youth unemployment rate, defined as the

unemployment rate for young people aged between 15 and
24

• LongTerm.Share: the long-term unemployment share,
defined as the Percentage of unemployed persons who
have been unemployed for 12 months or more



Aim of the analysis

Finding homogeneous groups of countries characterized by
similar unemployment structures.

Correlation structure

Corr =

 1 0.92 0.58
0.92 1 0.54
0.58 0.54 1


We decide to apply the Gustafson and Kessel extension of FkM
(function FKM.gk) in order to explore the existence of clusters
having non-spherical shapes.



FkM.gk with k = 3 clusters

Prior analyses on the data set suggest to run the algorithm
using standardized data (stand = 1), and to choose k = 3 (k
= 3) clusters (the default value m = 2 is set). The
here-considered algorithm has a high risk of hitting local optima
and, thus, 50 random starts are used (RS = 50).

> clust <- FKM.gk(unemployment, k = 3, RS =
50, stand = 1)
> cl.size(clust$U)
Clus 1 Clus 2 Clus 3

15 6 11



Clusters: covariance matrices

> clust$F
, , Clus 1

Total.Rate Youth.Rate LongTerm.Share
Total.Rate 1.299352 1.386309 2.770606
Youth.Rate 1.386309 2.088642 2.875459
LongTerm.Share 2.770606 2.875459 7.180983

, , Clus 2
Total.Rate Youth.Rate LongTerm.Share

Total.Rate 3.214435 3.511246 -1.801111
Youth.Rate 3.511246 4.683005 -1.961230
LongTerm.Share -1.801111 -1.961230 1.376300

, , Clus 3
Total.Rate Youth.Rate LongTerm.Share

Total.Rate 1.268973 1.859881 1.906008
Youth.Rate 1.859881 3.822880 2.140836
LongTerm.Share 1.906008 2.140836 3.969645



Results Visualization: plot.fclust (i)
Function plot.fclust(fclust.obj, v1v2, colclus,
umin, ucex, pca)
> plot.fclust(clust)
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Results Visualization: plot.fclust (ii)
> plot.fclust(clust,v1v2=c(1,3))
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Results Visualization: plot.fclust (iii)
> plot.fclust(clust,v1v2=c(2,3))
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Results Visualization: plot.fclust (iv)
> plot.fclust(clust, pca=TRUE)
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Results Visualization: VIFCR
> VIFCR(clust,2)
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Clusters

Cluster 1: {Bulgaria, Croatia, Cyprus, Portugal, Denmark,
Finland, France, Hungary, Iceland, Poland,
Slovakia, Slovenia, Sweden, Turkey, UK}

Cluster 2: {Estonia, Ireland, Greece, Latvia, Lithuania,
Spain}

Cluster 3: {Austria, Belgium, Czech Republic, Germany,
Italy, Luxembourg, Malta, Netherlands, Norway,
Romania, Switzerland}



Centroids

We now interpret the obtained clusters by studying the
centroids (using the function Hraw) and the membership
degree information.

> round(Hraw(clust$X, clust$H), 2)
Total.Rate Youth.Rate LongTerm.Share

Clus 1 9.07 22.07 34.41
Clus 2 16.20 34.71 52.13
Clus 3 5.67 14.17 38.27



Interpretation of the clusters

� Cluster 2 is composed by the Baltic states and a subset of
the European countries mostly suffering from the economic
crisis. Such a cluster is characterized by the highest levels
of all the variables, hence highlighting a critical situation.

� By inspecting the centroids we can conclude that Cluster 1
detects countries with medium total and young
unemployment rates and low long-term unemployment
shares. Therefore, Cluster 1 seems to highlight dynamic
labour markets.

� On the contrary, Cluster 3 represents static labour
markets. In detail, it is composed by countries with low
total and young unemployment rates and medium
long-term unemployment share.



Fish data

Food balance sheet of Fish, year 2009 (FAO)

Variables

� numeric:
• Production (tonnes in live weight)
• Imports (tonnes in live weight)
• Exports (tonnes in live weight)
• Population: (thousands)
• PCSupply: Supply (kilograms per capita per year)
• FishProtPC: Fish Proteins (grams per capita per day)
• AnimalProtPC: Animal Proteins (grams per capita per

day)
• TotalProtPC: Total Proteins (grams per capita per day)

units: 40 countries



Aim of the analysis

Finding homogeneous groups of countries characterized by
similar behaviour related to production, imports and exports of
fish, supply, fish, animal and total proteins.

• We have divided the first three variables by Population.
• We don’t consider the variable Population in the cluster

analysis.
• By inspecting the values of Fuzzy Silhouette for different

number of clusters, it results that the optimal number is
k = 3



FkM (k = 3 clusters)

Solution with k = 3 clusters (one low-size cluster)

> fkm <- FKM(X = fish, k = 3,
m=2, stand = 1, RS = 10)

> cl.size(fkm$U)

Cl 1 Cl 2 Cl 3
2 20 18

� Cluster 1 contains Iceland and Faroe Island



Membership degrees

> round(fkm$clus[1:15,], 2)
Cluster Membership degree

Albania 2 0.90
Austria 3 0.59
Belarus 2 0.91
Belgium 3 0.70
BosniaHerz 2 0.91
Bulgaria 2 0.92
Croatia 2 0.95
CzechRep 2 0.92
Denmark 3 0.64
Estonia 2 0.79
FaroeIs 1 0.96
Finland 3 0.94
FYRMacedonia 2 0.88
France 3 0.97
Germany 3 0.56



FkM with polynomial fuzzifier (k = 3 clusters)

Solution with k = 3 clusters (one low-size cluster)

> fkm.pf <- FKM.pf(X = fish, k = 3,
b = 0.5, stand = 1, RS = 10)

> cl.size(fkm.pf$U)

Cl 1 Cl 2 Cl 3
19 2 19

� Cluster 2 contains Iceland and Faroe Island
� They seem to be noisy data



Membership degrees

> round(fkm.pf$clus[1:15,], 2)
Cluster Membership degree

Albania 1 1.00
Austria 3 0.92
Belarus 1 1.00
Belgium 3 1.00
BosniaHerz 1 1.00
Bulgaria 1 1.00
Croatia 1 1.00
CzechRep 1 1.00
Denmark 3 1.00
Estonia 1 1.00
FaroeIs 2 1.00
Finland 3 1.00
FYRMacedonia 1 1.00
France 3 1.00
Germany 3 0.82



FkM with polynomial fuzzifier and noise clusters
(k = 2 clusters)

Solution with k = 2 clusters
> fkm.pf.noise <- FKM.pf.noise(X = fish, k = 2,

b = 0.5, stand = 1, RS = 10)

Membership degrees (the most relevant countries)
> fkm.pf.noise$U

Clus 1 Clus 2
Austria 0.28612643 0.67056640

FaroeIs 0.00000000 0.03307934

Germany 0.41432136 0.55093605

Iceland 0.00000000 0.29940487

Russian 0.66430809 0.30232321



Clusters

Cluster 1: {Albania, Belarusm, BosniaHerz, Bulgaria,
Croatia, CzechRep, Estonia, FYRMacedonia,
Hungary, Latvia, MoldovaRep, Montenegro,
Poland, Romania, Russian, Serbia, Slovakia,
Slovenia, Switzerland, Ukrainee}

Cluster 2: {Austria, Belgium, Denmark, Finland, France,
Germany, Greece, Ireland, Italy, Lithuania,
Luxemburg, Malta, Netherlands, Norway, Portugal,
Spain, Sweden, UK }

Noise cluster: {FaroeIs, Iceland}



Mean values (the most relevant variables)
> apply(fkm.pf.noise$X[,c(1,2,3,4)],2,mean)

Production Imports Exports PCSupply
456.55 35.34 261.54 23.39

Centroids (the most relevant variables)
> fkm.pf.noise$Hraw= Hraw(fkm.pf.noise$X,

fkm.pf.noise$H)

> round(fkm.pf.noise$Hraw[,c(1,2,3,4)],2)
Production Imports Exports PCSupply

Clus 1 10.39 12.14 10.73 10.93
Clus 2 139.06 48.14 99.53 31.36

FaroeIs (the most relevant variables)
> round(fkm.pf.noise$X[‘‘FaroeIs’’,c(1,2,3,4)],2)

Production Imports Exports PCSupply
FaroeIs 12491.59 115.47 6735.61 87.70

Iceland (the most relevant variables)
> round(fkm.pf.noise$X[‘‘Iceland’’,c(1,2,3,4)],2)

Production Imports Exports PCSupply
Iceland 4443.25 240.46 2477.47 88.30



Results Visualization: plot.fclust
> plot.fclust(fkm.pf.noise, pca=TRUE)
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Results Visualization: VIFCR
> VIFCR(fkm.pf.noise,2)
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