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Fuzzy clustering: why?

S The hard (crisp) approach to clustering may fail because
its black-and-white nature is too rigid to handle the real-life
complexity.

S Objects with intermediate characteristics between two
clusters are forced to belong to only one cluster.



Motivation example




Motivation example: hard clustering




Fuzzy clustering

S Objects are assigned to the clusters according to a certain
degree (grey-scale nature). It is called membership degree
and takes values in [0,1].



Fuzzy clustering: why?

@ F Klawonn, R. Kruse, R. Winkler (2015). Fuzzy clustering: more
than just fuzzification. Fuzzy Sets and Systems 281, 272-279.

% The initial idea of extending the classical k-means
clustering technique to an algorithm that uses membership
degrees instead of crisp assignments of data objects to
clusters led to the invention of a large variety of new
fuzzy clustering algorithms.

% It has been demonstrated that the use of membership
degrees for these algorithms - although it is not necessary
from the theoretical point of view - is essential for these
algorithms to function in practice.



Fuzzy k-Means (FkM) (Bezdek, 1974)
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where
X = [x;]: data matrix of order (nx t)
S U= [ujg]: membership degree matrix of order (n x k)
. H = [hg]: prototype matrix of order (k x t)
% m(>1): parameter of fuzziness (usually m = 2)
with
n: number of objects
t: number of variables
k: number of clusters



FkM: iterative solution (i)

Lagrangian function

n Kk
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We compute the partial derivatives of L w.r.t. uj; and A and we
set them equal to O:
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FkM: iterative solution (ii)

By the usual calculations we then get
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FkM: iterative solution (iii)

Fixing ujy we obtain hy by setting equal to 0 the partial
derivatives of L w.r.t. hg:
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Step 0.
Step 1.
Step 2.

Step 3.

FkM: iterative algorithm

Generate randomly a feasible membership degree
matrix U©).

Update the centroid matrix H® keeping fixed
ut=",

Update the fuzzy membership degree matrix U,
keeping fixed H(.

Check convergence. If the convergence condition
is not satisfied, go to Step 1.



Convergence criteria

1. Compare the membership degree matrices:
D _ Y| <€

(¢ is a fixed value).
2. Compare the centroid matrices

1
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3. Compare the values of the objective function:
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But...

% mis a “strange” parameter.

% The centroids are computed as weighted means of the
data with weights equal to u,-’g rather than uj,.



Entropic Fuzzy k-Means
(Li and Mukaidono, 1995, 1999)
mmJFkM = Z Ujgd? (x,,hg)+p2 Z uiglog ujg
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% pis is the degree of fuzzy entropy and it is called the
“‘temperature” in statistical physics.



The EM algorithm for mixture distributions

% A family of mixtures of k density functions contains density
of the form

p(x|6) = Z agPg(X|0g)
g=1

% Consider the problem of finding a local minimizer of the
function D(W,0)

n k
= Z Z (log wig —log agpg(Xi|6g))
=1g=1



EM and Entropic FkKM (Hathaway, 1986)
D(W,6) = E(W)+H(W,6)

k
Z wiglog wjg
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% E(W) is the negative sum of the entropies.

% H(W, ) can be viewed as a weighted distances function,
with log (1/(agpg(Xi|64))) representing a probabilistic
measure of the distance between x; and subpopulation g.



In case of non-spherical clusters?

Problem: The FkM and the entropic FkKM produce only
clusters with spherical shape...
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Non-spherical clusters: example 1
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Non-spherical clusters: example 2
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Example 1: FkM - results
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Example 2: FkM - results
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FkM with covariance matrices
(Gustafson & Kessel, 1979)

n k
min_ Java = Y ¥ uldZ (x;,h
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k

g:
where

S d2 (x;,hg) = (x;— hg)' Fg (i —hy) is the Mahalanobis
distance
> Fq: symmetric and definite positive

% pg: volume parameter (usually equal to 1)



FkM.gk: iterative solution
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is the fuzzy covariance matrix of the g-th cluster



Entropic - FKM - GK
(Ferraro e Giordani, 2013)

mMin _ Jrgv ok ent = Z Z U/ng (X,,hg)—{—p Z Z Uiglog ujg
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where

S a2 (x;,hg) = (x;—hg) Fg (x;— hy) is the Mahalanobis
distance



FkM.gk.ent: iterative solution

hg = % Fl= 9
¢ Su, 7 (det(Sg))'/t

n /
.21 Ug (X —hg) (x; —hg)
j=

Sg = n
Y Ujg
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is the fuzzy covariance matrix of the g-th cluster
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Example 1: FkM.gk.ent - results
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Example 2: FkM.gk.ent - results
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Unbalanced clusters
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Figure: Example of 2 clusters of size 200 and 10, respectively



FkM: results
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Figure: Example of 2 clusters of size 200 and 10, respectively



Fuzzy clustering with polynomial fuzzifier
(Klawonn and Hoppner, 2003)

% In FKM the fuzzifier m is used to control the overlapping
clusters.

% Furthermore, it leads to assign the objects to all clusters
with non-zero membership degrees, even when they are
very close to the prototypes.

In order to overcome this problem Klawonn and Hoppner
(2003) propose to use an alternative fuzzifier function: the
polynomial fuzzifier function.

« In general, a fuzzifier function is a continuous, strictly
increasing function f: [0,1] — [0, 1] with f(0) =0 and
f(1)=1.

e Inthe FkM case, f(ujg) = ujg.



Fuzzy k-Means with polynomial fuzzifiers (FkM.pf)
(Klawonn & Hoppner, 2003)

n k
minJexvipr= X X f(Uig)d2 (Xi,hg)
UH i=1g=1
k
s.t. Ujg € [0,1], Y Ujg = 1
g=1
where
ESY f(uig) = (%U%Jr %u@ is the polynomial fuzzifier
fuction
© Belo,1]

(-] for B = 0 we obtain the FkM with parameter m equal to 2
(7 for B = 1 the hard k-means



FKM.pf: results
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Figure: Example of 2 clusters of size 200 and 10, respectively



FkM.pf: iterative solution




FkM.pf: algorithm

% The constraint of non-negative membership values is not
naturally fulfilled as it is in FKM.

% To avoid this, in the iterative process we have to take into
account the constraint v, > 0.

% In the membership updates only the prototypes fulfilling
those conditions are included. The membership for all
other prototypes is set to zero. Hence the fuzzy
membership value is only computed for a subset of
prototypes.



Fuzzy k-Medoids (Krishnapuram et al., 2001)

rlTInJFkM med = 21 21 U'rgdz (xiv mg)
I=1g

s.t. Ug €[0,1], Zlu,-g:1,{mg,g:1,...,k} c{x;,i=1,...,n}.
g:

where
S {mg,g=1,....k} C{x;,i=1,....n}
the medoids are a subset of the observed objects

The fuzzy k-medoids algorithm is usually more robust than the
standard FkM algorithm.



Step Oa.
Step 1.

Step 2.

Step 3.

FkM.med: iterative algorithm

Initialize the medoid matrix M©®,
Update the fuzzy membership degree matrix U,
keeping fixed M~ by means of

1
k d?(x;,mg m-1
X <d2 ((vamg’)) >

g=1

Update the medoid matrix M), keeping fixed U,
by using
n
q = argminf_y Y ufja?(x;,x;)
i=1
g=1,..k, mg=Xg,.
Check convergence. If the convergence condition
is not satisfied, go to Step 1.



Initialization

1. Pick all the medoid candidates randomly.

2. Pick the first candidate as the object that is most central to
the data set, and then pick each successive one by one in
such a way that each one is most dissimilar to all the
medoids that have already been picked (see, for more
details, Krishnapuram et al., 2001).

3. Pick the first medoid candidate randomly. The rest of the
medoids are selected the same way as in Initialization 2.



Choice of the fuzziness parameter m

% In the FkM-type algorithms the usual choice is m in
[1.5,2].

% Since the medoid has always a membership of one in the
cluster, raising its membership to the power m has no
effect. Thus, when mis high, the mobility of the medoids
from iteration to iteration may be lost. For this reason, we
recommend a value between 1 and 1.5 for m for FkM.med.



FkM-type algorithms and Outliers

% The performance of k-means and fuzzy k-means
algorithms is affected by the outliers.

% The problem is due to the constraint on the membership
degrees. The sum of the membership degrees of each
object to the groups is equal to 1.

& In this way, also the outliers are assigned to the groups
and the centroids depend on those points.
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“Noise” cluster (Davé, 1991)

In presence of outliers, a possible approach is to consider an
additional cluster, called noise cluster. If an object is
recognized to be an outlier, then it is assigned to the noise
cluster with a high membership degree.

“Noise” prototype

A universal entity, h(x, 1), such that it is always at the same
distance from every point in the data-set:

d(x,-,h(k+1)):6, Vi.

The above definition does not tell us what the distance is. It
simply says that all the points are at the same distance from
the noise prototype.



FkM with noise cluster (Davé, 1991)

11g1

m
k
minJFkM.noise = Z Z U d (x/ahg) + Z 62 (1 - X Uig)
UH g=1
s.t. U €[0,1], Z Ug=1.
g=1

where

% §2: squared distance of each point to the noise cluster



What do we get?

% A partition with k + 1 clusters: the first k standard clusters
are homogeneous, whereas the noise cluster contains all
the outliers and is usually not formed by objects with
homogeneous features.



FkM.noise: iterative solution

S Uig = i1 T (9=
d(xphg) |\ @?(x;hg) \ M1
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Choice of &

% If the value of § is chosen to be very small, then most of
the points will get classified as noise points.

% If the value of § is large, then most of the points will be
classified into clusters other than the noise cluster.

% A possible choice is average of the interpoint distances:

kK n o
g=1i=1

2
0" =4 nk



Cluster validity

% A value representing a measure of the partition quality is
assigned to the output of a clustering algorithm.

% A cluster validity measure is useful to find the optimal
values for m and k.

Two types of cluster validity measure:

(-] Fuzziness measure
(] Compactness and separation measure



Fuzziness measure

To evaluate the partition fuzziness, it is necessary to synthesize
the information contained in the membership degree matrix in
one value. This value indicates the degree of accuracy of the
assighment of units to clusters.

(-] Partition coefficient
(7 Partition entropy
(] Modified partition coefficient



Partition coefficient (Bezdek, 1974)

2

PCk)=Y Y (“’,'f”) .

i=1g=1

% The range of variation of PC is [1/k,1]:
o 1/k if all the membership degrees are equal to 1/k, that is,
in case of maximum fuzziness of the partition,
o 1if and only if all the membership degrees are equal to 0 or
1 (hard partition).
% The optimal number of cluster k is obtained maximizing
PC w.rt. k.

% The disadvantages of the partition coefficient are its
monotonic tendency and lack of direct connection to some
property of the data themselves.



Partition entropy (Bezdek, 1974)

n k . .
PE(K)=-Y ¥ “'90%3(“'9),
i=1g=1

% The range of variation of PE is [0,log K]:
¢ 0if and only if all the membership degrees are equal to 0 or
1,
» logk if all the membership degrees are equal to 1/k, that is,
in case of maximum fuzziness of the partition.
% The optimal number of cluster k is obtained minimizing
PE w.r.t. k.

% As for PC, there is a monotonic tendency.



Modified partition coefficient (Davé, 1996)

To avoid the monotonic tendency a modified partition coefficient
(MPC) has been introduced by Davé. It consists in a linear
transformation of PC:

k

MPC(k) = 1 - — (1= PC(K)).

% The range of variation of MPC is [0, 1]:

e 0 in case of maximum fuzziness of the partition,
¢ 1in case of crisp partition.



Compactness and Separation measures

() Xie and Beni index
(I Silhouette
(] Fuzzy silhouette



Xie and Beni index (1991)

The Xie and Beni (XB) index is a popular fuzzy cluster validity
measure defined as

» Z Z u2 d (x;,hg)
dr%/n nl’;]lgl’/] d?(hg, hy)

K
S oof =1 21 g; uédz (x;,hg) is the total within-cluster

n

distance, that is the compactness of the fuzzy partition.

2 . 2 . =
D g2 = r;wlgr) d“(hg,hy) is a separation measure.



Xie and Beni index: a generalized version

n kK o
Y X ugd (x;,hg)

XB(K) = o3, i=1g=1
2. nmind?(hg,hy)
9.9

% The compactness is defined as the distance between the
objects and the centroids, weighted with ug.

% The separation is defined as the minimum distance
between the centroids.

% The optimal partition (maximum compactness and
separation), is obtained minimizing the index.

% The drawback is the monotonic tendency.



Silhouette
(Kaufman e Rousseeuw, 1990)

For each object i the silhouette index is defines as:

b,‘ — aj

Si(K) = —7——-

(k) max(b;, a;)

% a(i) is the average distance of object i to all other objects
belonging to the same cluster.

% p(i) is the minimum average distance of object i to all
objects belonging to another cluster.

% si(k) ranges in [—1,1].



Silhouette index for each object

% If s; tends to 1 the object i is well assigned to the
corresponding cluster. This happens when b; is high and a;
is small.

% In general, if a; < b; then s;(k) > 0. On the other hand, a
negative value of s;(k) indicates that object i is not well
assigned to the cluster.



Silhouette index for the partition

The (crisp) silhouette (CS) is defined as the average of s; over
=1 ,ooe,n

cam:l;$wy

The optimal value of k is obtained maximizing CS.



Fuzzy Silhouette
(Campello e Hruschka, 2006)

Since CS does not take into account the membership degree
matrix U, a fuzzy version of the index has been introduced:

é(uig — Uig')*si(k)

FS(k) ="

(Uig - Uig’)a

Tts

i

where

* Ujg and ujy are the first and second largest elements of the
i-th row of the fuzzy partition matrix, respectively.

e o is the weight (usually o = 1).
The optimal value of k is obtained maximizing FS.



Visualization techniques (i)

Since the cluster validity indices reduce the information of a
large dataset to a single value, it is necessary to consider
visualization techniques for fuzzy clustering, involving different
information about the results.

% VIFCR (Klawon et al., 2003)

(] A chart diagram of the scaled frequency related to the
membership degrees

1 Z (k(k -2) i+ k )
-~ ig )
n (i,9):a<ujg<b k=1 k=1

with a,be€[0,1] and a< b.



Visualization techniques (ii)

(7 A diagram whose coordinates, for each object (point) x;,
are
* U, : the highest membership degree of x;
* Ujg,: the second highest membership degree of x;
All the points are included in the triangle of vertices (0,0)
(noise data), (0.5,0.5) (ambiguous data) and (1,0) (crisp
assignments).

(] A diagram whose coordinates, for each object (point) x;,
are

(dig, Uig)

The ideal situation is to obtain high membership degrees
for small distances and low membership degrees for large
distances.



Visualization techniques (iii)

D VAT (Bezdek & Hataway, 2002)

 The matrix of dissimilarities between the objects, R = [r;], is
considered.

o The matrix is reordered obtaining R*.

e lts image /(R*) is displayed.

The number of dark blocks along its main diagonal
represents the number of clusters and the size of each
block the approximate size of the cluster.



Visualization techniques (iv)

& VCV (Hathaway & Bezdek, 2003)

o First of all the clusters are ordered and the objects in each
cluster are ordered by taking into account the membership
degrees.

» Then, the dissimilarities r; between object x; and x; are
taken into account.

o The following dissimilarities are used:

ri = min {d,+d,
ij 1§g§k{ Ig+ jg}7

where djg = d(x;, hy).
o Finally, the information is displayed as an intensity image
I(R*).



Visualization techniques (v)

& VCV2 (Huband & Bezdek, 2008)

e The membership degrees matrix U is reordered using the
index array of R* obtained by means of the VAT.
e The resulting matrix U is transformed to the square matrix

U =1,— (UTLA//max{(LA/TU%}) |

o The display image /(U*) is compared with /(R*) to check
the adequacy of the number of clusters.



Software
Starting from FkM, fuzzy clustering has received an increasing
attention by researchers from several fields.

Nonetheless, popular commercial software solutions (SAs,
SPSS, ...) do not contain routines for fuzzy clustering. Just a
few exceptions (limited to FkKM): MATLAB and R.

R package fclust, version 1.1.2

Suit of functions for fuzzy clustering analysis (algorithms,
cluster validity indices and visualization tools).

> http://cran.r-project.org/web/packages/fclust/index.html

@ M.B. Ferraro, P. Giordani (2015). A toolbox for fuzzy clustering
using the R programming language. Fuzzy Sets and Systems
279, 1-16.



The package

Package ‘fclust’

September 7, 2015
Type Package
Title Fuzzy Clustering
Version 1.1.2
Date 2015-09-06
Author Paolo Giordani, Maria Brigida Ferraro
Maintainer Paolo Giordani <paolo.giordani@uniromal.it>
Description Algorithms for fuzzy clustering, cluster validity indices and plots for cluster valid-
ity and visualizing fuzzy clustering results.
Depends R(>=2.8.1), base, stats, graphics, grDevices
License GPL (>=2)
LazyLoad yes
Repository CRAN
NeedsCompilation no
Date/Publication 2015-09-07 00:41:04




fclust

Main features of the package

& 36 functions + 4 datasets

% Most relevant functions for algorithms:
FKM: standard FAM algorithm
FKM.gk: Gustafson and Kessel extension of FkKM
FKM.med: fuzzy k-medoids algorithm
FKM.noise: FKM with noise cluster

% Most relevant functions for cluster validity indices:
PC: partition coefficient
PE: partition entropy (PE);
xB: Xie and Beni index (XB)
STIL.F: fuzzy silhouette (FS)

% Interactive fuzzy clustering analysis by means of the
function Fclust



Input arguments (for the algorithms)

% x: object of class matrix or data.frame
% k: number of clusters (default: 2)
% m: parameter of fuzziness (default: 2)

% stand: if stand=1, the clustering algorithm is run using
standardized data (default: no standardization)

RS: number of (random) starts (default: 1)

startU: rational starting point for the membership degree
matrix U (default: no rational start)

conv: convergence criterion (default: 1e-9)
maxit: maximum number of iterations (default: 1e+6)

oob 00



Output values (for the algorithms)
Object of class fclust. List with the following components:

% u: membership degree matrix

% H: prototype matrix
clus: matrix containing the indices of the clusters where
the objects are assigned (column 1) and the associated
membership degrees (column 2)

% medoid: vector containing the indices of the medoid
objects
value: vector containing the loss function values for the
RS starts

% cput: vector containing the computational times (user
times) for the RS starts

% xca: data used in the clustering algorithm (standardized
data if stand=1)

% x:raw data

% call: matched call
LS



McDonald’s data

McDonald’s USA Nutrition Facts (81 menu items, no beverages)

> library ("fclust")
> data (Mc)

Variables

@ numeric:
Serving Size, Calories, Total Fat (g), Saturated
Fat (g), Trans Fat (g),Cholesterol (mg), Sodium
(mg), Carbohydrates (g),Dietary Fiber (g), Sugars
(g),Protein (g),Vitamin A (%DV),Vitamin C (%DV),
Calcium (%DV), Iron (%DV)

& factor:
Type (levels: Burgers & Sandwiches, Chicken,
Breakfast, Salads, Snacks & Sides,Desserts/Shakes)



Aim of the analysis

Clustering of the menu items (scores normalized w.r.t.
Serving Size) to discover whether a cluster structure exists
(i.e. similar menu items in terms of their nutrition facts) and, in
particular, whether a six-cluster structure is visible emerging a
link between the variable type and the typology of nutrition
facts.

Standard FkM algorithm (function FxM):

> fkm <- FKM (X Mc[,1: (ncol (Mc)-1 k =

= )1,
m= 1.5, stand = 1, RS = 10)

Cy



Number of clusters
FS index for values of k =2,...,10:
F's vector containing the FS values (script omitted)
> round (F'S, 2)
k=2 k=3 k=4 k=5 k==¢
0.52 0.49 0.48 0.55 0.62
k=7 k=8 k=9 k 10
0.64 0.57 0.62 0.61

Solution with k = 7 clusters (two low-size clusters)

> fkm7 <— FKM(X = Mc[,1:(ncol (Mc)-1)1,
m= 1.5, stand = 1, RS = 10)

> cl.size (fkm7S$0U)
cl1 Ccl12 Cl13 Cl14 Cl1l5 Clo C17
24 12 4 13 15 10 3



Data Visualization: VAT

Function VAT (Xca)
> VAT (fkm7$Xca)

VAT




FkM with k = 6 clusters
Trying to avoid low-size clusters, we move to k = 6 solution
(FS=0.62)

Mc[,1l: (ncol (Mc)-1

= )]Ik:6l
.5, stand = 1, RS = 10)

> fkmo6 <— FKM (X
m =1

> cl.size (fkm6s$U)
cl1 Ccl1l2 Cl13 Cl1l4 Cl5 Cl1o
12 26 10 15 5 13

Comparison between the solutions with k =6 and k=7
> table (fkm6Sclus([,1], fkm7S$clus([,1])

ci1 clIL2 Cc13 Cl1l4 Cl15 Cloe Cl7
Cl 1 0 12 0 0 0 0 0
Cl 2 24 0 0 0 0 0 2
Ccl 3 0 0 0 0 0 10 0
Cl 4 0 0 0 0 15 0 0
Cl 5 0 0 4 0 0 0 1
Cl 6 0 0 0 13 0 0 0



Interpretation of the clusters (i)

> table (Mc$Type, fkm6Sclus[,1])

Breakfast

Burgers & Sandwiches
Chicken
Desserts/Shakes
Salads

Snacks & Sides

Clusters
Cluster 1 Breakfast
Cluster 3 Salads

Cl 1
12
0

o O O o

Cl 2
5
1

~N O O » O

T m—ri
S
@

O O O O U

(Bacon, Egg & Cheese
Biscuit)

(Premium Southwest Salad
with Grilled Chicken)

P O O OoODNMNDO O



Interpretation of the clusters (ii)

N
TR,

Cluster 4 .Desserts/Shake.s v 7 (McFlurry with OREQ
(ice-creams and fruits) Cookies)
p Se it
Cluster 5 Desserts/Shakes - (Oatmeal Raisin Cookie)

(cookies and pies)

More complex interpretation for Clusters 2 and 6

% Burgers & Sandwiches assigned to Cluster 6 (although
no one-to-one relationship)

% Cluster 2 contains food items of different types

Nonetheless, by further inspecting the food items of type
Burgers & Sandwiches assigned to Cluster 2 (the code is
omitted), a clear interpretation of Clusters 2 and 6 can be found



Interpretation of the clusters (iii)
Findings
% Chicken-made food items belong to Cluster 2 along with
two other food items with fish and pork
% All the food items assigned to Cluster 6 contain beef

% 6 (out of 7) food items of type Snacks & Sides assigned
to Cluster 2 are chicken-based

Hence

Cluster 2 “chicken-made food items” @ (Premium Crispy

Chicken Ranch)

Cluster 6 beef-made Ipurge”rs and — (McDoubl)
sandwiches



Centroids (i)

> fkm6$SHraw <— Hraw (fkm6$X, fkm6S$H)

%= Breakfast items have the highest values of Cholesterol
(mg) and Sodium (mg) (a lot of items with eggs)

®F  “chicken-made food items” presents average values for the
nutrition facts except for high values of sodium (mg) and
the lowest values of Vitamin A (%DV)

<@ Salads are the most healthy items (the lowest values of
Calories, Total Fat (g), Saturated Fat (g) and
Trans Fat (g) and the highest values of vitamin A
and vitamin C (%DV))



1§

Centroids (ii)

Ice-creams and fruits (Desserts/Shakes) present

the lowest values of Cholesterol (mg), Sodium (mg),
Dietary Fiber (g),Protein (g) and Iron (%DV)
and the highest values of Calcium (%DV)

Cookies and pies (Desserts/Shakes) are the less
dietetic ones: the highest amounts of Calories,

Total Fat (g), Saturated Fat (g), Carbohydrates
Sugars (g) . Also the highest values of Tron (%DV) and
the lowest values of Calcium (%DV)

“peef-made burgers and sandwiches” present
the highest values of Trans Fat (g) and Protein (g)



Membership degrees (examples)
N Oatmeal Raisin Cookie (Cluster 5 with membership degree = 0.99)

fe Baked Hot Apple Pie (Cluster 5 with membership degree = 0.53)

Mean values (the most relevant variables)

> round (apply (fkm6$X([,c(1,2,3,7,9,13,14)],2,mean) ,2)
Calories Total Fat Saturated Fat Carbohydrates Sugars Iron (%DV) Calcium (%DV)
2.33 0.11 0.04 0.25 0.08 0.09 0.08

Centroid of Cluster 5 (the most relevant variables)

> round (fkmé6$Hraw([5,c(1,2,3,7,9,13,14)1,2)
Calories Total Fat Saturated Fat Carbohydrates Sugars Iron (%DV) Calcium (%DV)
4.35 0.19 0.09 0.59 0.33 0.04 0.16

Oatmeal Raisin Cookie (the most relevant variables)

> round (fkm6$X [ *‘Oatmeal Raisin Cookie’’,c(1,2,3,7,9,13,14)1,2)
Calories Total Fat Saturated Fat Carbohydrates Sugars Iron (%DV) Calcium (%DV)
4.55 0.18 0.08 0.67 0.39 0.06 0.18

Baked Hot Apple Pie (the most relevant variables)
> round (fkm6$X[ * ‘Baked Hot Apple Pie’’,c(1,2,3,7,9,13,14)]1,2)

Calories Total Fat Saturated Fat Carbohydrates Sugars Iron (%DV) Calcium (%DV)
3.25 0.17 0.09 0.42 0.17 0.03 0.08



Results Visualization: VCV2

Function vCv2 (Xca,
> VCV2 (fkm6S$Xca,

U, which)
fkm6SU, 2)

VCV2




Results Visualization: VIFCR

Function VIFCR (fclust.obj, which)
> VIFCR (fkmé6, 2)

Cluster Max Memb. Degrees

@Q |
o
N
o
o o
o o o
I o
° o o ooogq9

O OO%
o




Unemployment data

The data set contains the unemployment rates and shares of
32 European countries in 2011 (source: Eurostat).

> library ("fclust")
> data (unemployment)

Variables

ESY numeric:

e Total.Rate: the percentage of unemployed persons
aged 15-74 in the economically active population

e Youth.Rate: the youth unemployment rate, defined as the
unemployment rate for young people aged between 15 and
24

e LongTerm. Share: the long-term unemployment share,
defined as the Percentage of unemployed persons who
have been unemployed for 12 months or more



Aim of the analysis

Finding homogeneous groups of countries characterized by
similar unemployment structures.

Correlation structure

092 1 0.54
0.58 054 1

Corr =

1 092 0.58 ]

We decide to apply the Gustafson and Kessel extension of FkKM
(function FKM. gk) in order to explore the existence of clusters
having non-spherical shapes.



FkM.gk with k = 3 clusters

Prior analyses on the data set suggest to run the algorithm
using standardized data (stand = 1), and to choose k =3 (k
= 3) clusters (the default value m= 2 is set). The
here-considered algorithm has a high risk of hitting local optima
and, thus, 50 random starts are used (RS = 50).

> clust <- FKM.gk (unemployment, k = 3, RS =
50, stand = 1)
> cl.size (clusts$U)
Clus 1 Clus 2 Clus 3
15 6 11



Clusters: covariance matrices

> clustsSF

14

14

4

, Clus 1

Total.Rate
Youth.Rate

LongTerm. Share
, Clus 2

Total.Rate
Youth.Rate

LongTerm. Share
, Clus 3

Total.Rate
Youth.Rate
LongTerm. Share

Total.Rate
1.299352
1.386309
2.770606

Total.Rate
3.214435
3.511246

-1.801111

Total.Rate
1.268973
1.859881
1.906008

Youth.Rate
1.386309
2.088642
2.875459

Youth.Rate
3.511246
4.683005

-1.961230

Youth.Rate
1.859881
3.822880
2.140836

LongTerm. Share
2.770606
2.875459
7.180983

LongTerm. Share
-1.801111
-1.961230

1.376300

LongTerm. Share
1.906008
2.140836
3.969645



Results Visualization: plot.fclust (i)

Function plot.fclust (fclust.obj, vlv2, colclus,
umin, ucex, pca)
> plot.fclust (clust)
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LongTerm.Share

Results Visualization: plot.fclust (ii)
> plot.fclust (clust,vliv2=c(l,3))
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LongTerm.Share

Results Visualization: plot.fclust (iii)
> plot.fclust (clust,vliv2=c(2,3))
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Principal Component 2

Results Visualization: plot.fclust (iv)
> plot.fclust (clust, pca=TRUE)
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Variability explained by these two components: 89.05%




Results Visualization: VIFCR

> VIFCR (clust, 2)
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Cluster 1:

Cluster 2:

Cluster 3:

Clusters

{Bulgaria, Croatia, Cyprus, Portugal, Denmark,
Finland, France, Hungary, Iceland, Poland,
Slovakia, Slovenia, Sweden, Turkey, UK}

{Estonia, Ireland, Greece, Latvia, Lithuania,
Spain}

{Austria, Belgium, Czech Republic, Germany,
Italy, Luxembourg, Malta, Netherlands, Norway,
Romania, Switzerland}



Centroids

We now interpret the obtained clusters by studying the
centroids (using the function Hraw) and the membership
degree information.

> round (Hraw (clust$X, clustS$H), 2)
Total.Rate Youth.Rate LongTerm.Share

Clus 1 9.07 22.07 34.41
Clus 2 16.20 34.71 52.13
Clus 3 5.67 14.17 38.27



Interpretation of the clusters

% Cluster 2 is composed by the Baltic states and a subset of
the European countries mostly suffering from the economic
crisis. Such a cluster is characterized by the highest levels
of all the variables, hence highlighting a critical situation.

% By inspecting the centroids we can conclude that Cluster 1
detects countries with medium total and young
unemployment rates and low long-term unemployment
shares. Therefore, Cluster 1 seems to highlight dynamic
labour markets.

% On the contrary, Cluster 3 represents static labour
markets. In detail, it is composed by countries with low
total and young unemployment rates and medium
long-term unemployment share.



Fish data

Food balance sheet of Fish, year 2009 (FAO)

Variables

ESY numeric:

Production (tonnes in live weight)

Tmports (tonnes in live weight)

Exports (tonnes in live weight)

Population: (thousands)

pPCSupply: Supply (kilograms per capita per year)
FishProtPC: Fish Proteins (grams per capita per day)
AnimalProtPC: Animal Proteins (grams per capita per
day)

e TotalProtPC: Total Proteins (grams per capita per day)

units: 40 countries



Aim of the analysis

Finding homogeneous groups of countries characterized by
similar behaviour related to production, imports and exports of
fish, supply, fish, animal and total proteins.

¢ We have divided the first three variables by Population.

e« We don’t consider the variable Population in the cluster
analysis.

» By inspecting the values of Fuzzy Silhouette for different
number of clusters, it results that the optimal number is
k=3



FkM (k = 3 clusters)

Solution with k = 3 clusters (one low-size cluster)

> fkm <- FKM(X = fish, k = 3,
m=2, stand = 1, RS = 10)

> cl.size (fkmSU)

cl 1 Ccl2 Cl3
2 20 18

% Cluster 1 contains Iceland and Faroe Island



Membership degrees

> round (fkm$clus[1:15,], 2)
Membership degree

Albania
Austria
Belarus
Belgium
BosniaHerz
Bulgaria
Croatia
CzechRep
Denmark
Estonia
Faroels
Finland
FYRMacedonia
France
Germany

Cluster

W WN WEDNWDNDNDDNDDND WD WN

0.
.59
.91
.70
.91
.92
.95
.92
.64
.79
.96
.94
.88
.97
.56

O O O O O OO OO oo oo

90



FkM with polynomial fuzzifier (k = 3 clusters)

Solution with k = 3 clusters (one low-size cluster)

> fkm.pf <- FKM.pf (X = fish, k = 3,
b =0.5 stand = 1, RS = 10)

> cl.size (fkm.pfs$U)

cl1 Ccl2 cCl 3
19 2 19

% Cluster 2 contains Iceland and Faroe Island
% They seem to be noisy data



Membership degrees

> round (fkm.pfS$clus[1:15,]1, 2)
Membership degree

Albania
Austria
Belarus
Belgium
BosniaHerz
Bulgaria
Croatia
CzechRep
Denmark
Estonia
Faroels
Finland
FYRMacedonia
France
Germany

Cluster
1

WWHE WNDRF WR PP P WRE W

1.
.92
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.82

SR e e e e e e e e =)

00



FkM with polynomial fuzzifier and noise clusters
(k = 2 clusters)

Solution with k = 2 clusters

> fkm.pf.noise <- FKM.pf.noise (X = fish, k
b = 0.5, stand =

Il
i
o
n

Membership degrees (the most relevant countries)
> fkm.pf.noise$U

Clus 1 Clus 2
Austria 0.28612643 0.67056640
FaroeIs 0.00000000 0.03307934
Germany 0.41432136 0.55093605
Iceland 0.00000000 0.29940487
Russian 0.66430809 0.30232321



Clusters

Cluster 1: {Albania, Belarusm, BosniaHerz, Bulgaria,
Croatia, CzechRep, Estonia, FYRMacedonia,
Hungary, Latvia, MoldovaRep, Montenegro,
Poland, Romania, Russian, Serbia, Slovakia,
Slovenia, Switzerland, Ukrainee}

Cluster 2: {Austria, Belgium, Denmark, Finland, France,
Germany, Greece, Ireland, ltaly, Lithuania,
Luxemburg, Malta, Netherlands, Norway, Portugal,
Spain, Sweden, UK }

Noise cluster: {Faroels, Iceland}



Mean values (the most relevant variables)
> apply (fkm.pf.noise$X[,c(1,2,3,4)]1,2,mean)
Production Imports Exports PCSupply
456.55 35.34 261.54 23.39
Centroids (the most relevant variables)
> fkm.pf.noise$Hraw= Hraw (fkm.pf.noise$X,
fkm.pf.noise$H)
> round (fkm.pf.noise$Hrawl[,c(1,2,3,4)1,2)
Production Imports Exports PCSupply
Clus 1 10.39 12.14 10.73 10.93
Clus 2 139.06 48.14 99.53 31.36

Faroels (the most relevant variables)

> round (fkm.pf.noise$X[ ' ‘Faroels’’,c(1,2,3,4)1,2)
Production Imports Exports PCSupply

Faroels 12491.59 115.47 6735.61 87.70

Iceland (the most relevant variables)
> round (fkm.pf.noise$X[‘'‘Iceland’’,c(1,2,3,4)1,2)
Production Imports Exports PCSupply
Iceland 4443.25 240.4¢6 2477 .47 88.30



Principal Component 2

Results Visualization: plot.fclust
> plot.fclust (fkm.pf.noise, pca=TRUE)
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Variability explained by these two components: 69.46%




Results Visualization: VIFCR

> VIFCR (fkm.pf.noise, 2)

Cluster Max Memb. Degrees
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