B0596
Title: Bayesian spatial modeling of misaligned data using INLA and SPDE
Authors: Paula Moraga - King Abdullah University of Science and Technology (KAUST) (Saudi Arabia) [presenting]
Abstract: Spatially misaligned data are becoming increasingly common due to advances in data collection and management. We present a Bayesian geostatistical model for the combination of data obtain at different spatial resolutions. The model assumes that underlying all observations, there is a spatially continuous variable that can be modeled using a Gaussian random field process. The model is fitted using the integrated nested Laplace approximation (INLA) and the stochastic partial differential equation (SPDE) approaches. In order to allow the combination of spatially misaligned data, a new SPDE projection matrix for mapping the Gaussian Markov random field from the observations to the triangulation nodes is proposed. We show the performance of the new approach by means of simulation and an application of PM2.5 prediction in USA. The approach presented provides a useful tool in a wide range of situations where information at different spatial scales needs to be combined.