CMStatistics 2022: Start Registration
View Submission - CFE
A0201
Title: L2-relaxation: With applications to forecast combination and portfolio analysis Authors:  Zhentao Shi - CUHK (Hong Kong) [presenting]
Abstract: Forecast combination with many forecasts or minimum variance portfolio selection with many assets is tackled. A novel convex problem called L2-relaxation is proposed. In contrast to standard formulations, L2-relaxation minimizes the squared Euclidean norm of the weight vector subject to a set of relaxed linear inequality constraints. The magnitude of relaxation, controlled by a tuning parameter, balances the bias and variance. When the variance-covariance (VC) matrix of the individual forecast errors or financial assets exhibits latent group structures a block equicorrelation matrix plus a VC for idiosyncratic noises, the solution to L2-relaxation delivers roughly equal within-group weights. Optimality of the new method is established under the asymptotic framework when the number of the cross-sectional units N potentially grows much faster than the time dimension T. Excellent finite sample performance of our method is demonstrated in Monte Carlo simulations. Its wide applicability is highlighted in three real data examples concerning empirical applications of microeconomics, macroeconomics, and finance.