CMStatistics 2022: Start Registration
View Submission - CFE
A0179
Title: Bootstrap inference in the presence of bias Authors:  Giuseppe Cavaliere - University of Bologna (Italy) [presenting]
Silvia Goncalves - McGill University (Canada)
Morten Nielsen - Queen's University (Canada)
Abstract: Bootstrap inference is considered for estimators which are (asymptotically) biased. We show that, even when the bias term cannot be consistently estimated, valid inference can be obtained by proper implementations of the bootstrap. Specifically, we show that the prepivoting approach, originally proposed to deliver higher-order refinements, restores bootstrap validity by transforming the original bootstrap p-value into an asymptotically uniform random variable. We propose two different implementations of prepivoting (plug-in and double bootstrap) and provide general high-level conditions that imply the validity of bootstrap inference. To illustrate the practical relevance and implementation of our results, we discuss five applications: (i) a simple location model for i.i.d. data, possibly with infinite variance; (ii) regression models with omitted controls; (iii) inference on a target parameter based on model averaging; (iv) ridge-type regularized estimators; and (v) dynamic panel data models.