CMStatistics 2022: Start Registration
View Submission - CMStatistics
B1195
Title: Doubly debiased lasso: High-dimensional inference under hidden confounding Authors:  Zijian Guo - Rutgers University (United States) [presenting]
Domagoj Cevid - ETH Zurich (Switzerland)
Abstract: Inferring causal relationships or related associations from observational data can be invalidated by the existence of hidden confounding. We focus on a high-dimensional linear regression setting, where the measured covariates are affected by hidden confounding and propose the Doubly Debiased Lasso estimator for individual components of the regression coefficient vector. Our advocated method simultaneously corrects both the bias due to the estimation of high-dimensional parameters as well as the bias caused by the hidden confounding. We establish its asymptotic normality and also prove that it is efficient in the Gauss-Markov sense. The validity of our methodology relies on a dense confounding assumption, i.e. that every confounding variable affects many covariates. The finite sample performance is illustrated with an extensive simulation study and a genomic application.