CMStatistics 2021: Start Registration
View Submission - CMStatistics
B0559
Title: Variational inference for sparse deep learning Authors:  Qifan Song - Purdue University (United States) [presenting]
Abstract: Sparse deep learning aims to address the challenge of huge storage consumption by deep neural networks, and to recover the sparse structure of target functions. Although tremendous empirical successes have been achieved, most sparse deep learning algorithms are lacking theoretical support. On the other hand, another line of works has proposed theoretical frameworks that are computationally infeasible. We train sparse deep neural networks with a fully Bayesian treatment under spike-and-slab priors, and develop a set of computationally efficient variational inferences via continuous relaxation of Bernoulli distribution. The variational posterior contraction rate is provided, which justifies the consistency of the proposed variational Bayes method. Notably, our empirical results demonstrate that this variational procedure provides uncertainty quantification in terms of Bayesian predictive distribution and is also capable to accomplish consistent variable selection by training a sparse multi-layer neural network.