CMStatistics 2021: Start Registration
View Submission - CFE
A0381
Title: Identification and forecasting of bull and bear markets using multivariate returns Authors:  Yong Song - University of Melbourne (Australia) [presenting]
John Maheu - McMaster University (Canada)
Jia Liu - Saint Mary's University (Canada)
Abstract: Bull and bear market identification generally focuses on a broad index of returns through a univariate analysis. A new approach is proposed to identify and forecast bull and bear markets through multivariate returns. The model assumes all assets are directed by a common discrete state variable from a hierarchical Markov switching model. The hierarchical specification allows the cross-section of state-specific means and variances to differ over bull and bear markets. We investigate several empirically realistic specifications that permit feasible estimation even with 100 assets. The results show that the multivariate framework provides competitive bull and bear regime identification and improves portfolio performance and density prediction compared to several benchmark models, including univariate Markov switching models.