COMPSTAT 2018: Start Registration
View Submission - COMPSTAT2018
Title: A tractable multi-partitions clustering Authors:  Vincent Vandewalle - Inria (France) [presenting]
Matthieu Marbac-Lourdelle - ENSAI and CREST (France)
Abstract: In the framework of model-based clustering, a model allowing several latent class variables is proposed. This model assumes that the distribution of the observed data can be factorized into several independent blocks of variables. Each block is assumed to follow a latent class model (i.e., mixture with conditional independence assumption). The proposed model includes variable selection, as a special case, and is able to cope with the mixed-data setting. The simplicity of the model allows to estimate the repartition of the variables into blocks and the mixture parameters simultaneously, thus avoiding running EM algorithms for each possible repartition of variables into blocks. For the proposed method, a model is defined by the number of blocks, the number of clusters inside each block and the repartition of variables into block. Model selection can be done with two information criteria, the BIC and the MICL, for which an efficient optimization is proposed. The performances of the model will be studied on simulated and real data. It will be shown that the proposed method gives a rich interpretation of the dataset at hand (i.e., analysis of the repartition of the variables into blocks and analysis of the clusters produced by each block of variables).