CMStatistics 2018: Start Registration
View Submission - CMStatistics
Title: Revealing subgroup structure in ranked data using a Bayesian WAND Authors:  Daniel Henderson - Newcastle University (United Kingdom) [presenting]
Abstract: Ranked data arise in many areas of application ranging from the ranking of up-regulated genes for cancer to the ranking of academic statistics journals. Complications can arise when rankers do not report a full ranking of all entities; for example, they might only report their top-$M$ ranked entities after seeing some or all entities. It can also be useful to know whether rankers are equally informative, and whether some entities are effectively judged to be exchangeable. We propose a flexible Bayesian nonparametric model for dealing with heterogeneous structure and ranker reliability in ranked data. The model is a Weighted Adapted Nested Dirichlet (WAND) process mixture of Plackett-Luce models and inference proceeds through a simple and efficient Gibbs sampling scheme for posterior sampling. The richness of information in the posterior distribution allows us to infer many details of the structure both between ranker groups and between entity groups (within ranker groups). The methodology is illustrated using several real data examples.