CMStatistics 2018: Start Registration
View Submission - CMStatistics
Title: Predicting trends of institutional confidence through a hidden Markov model with survey weights and missing responses Authors:  Fulvia Pennoni - University of Milano-Bicocca (Italy) [presenting]
Ewa Genge - University of Economics in Katowice (Poland)
Abstract: A statistical methodology is proposed for the analysis of a latent concept which is fluctuating over time such as the perceived trust towards financial and political institutions. We conceive confidence as a mental unobservable feature of each person which is related to the observed time-varying and time-fixed covariates. We model the uncertainty in the response through a hidden Markov models, and we account for longitudinal survey weights, as well as missing responses when survey data are available. We estimate the model parameters by a weighted log-likelihood which is maximized by the expectation-maximization algorithm in order to find hidden clusters of people with the same perceptions towards the institutions. We allocate each individual according to the Viterbi algorithm applied to the posterior probabilities. By considering the Polish society we find four hidden groups of Poles: discouraged, with no opinion, with selective trust and with fully trust towards institutions. We predict an increasing tendency to choose the institutions to support.