CMStatistics 2018: Start Registration
View Submission - CMStatistics
Title: Global spectral clustering of dynamic networks Authors:  David Choi - Carnegie Mellon (United States) [presenting]
Abstract: A new method (PisCES) is presented for finding time-varying community structure in dynamic networks. The method implements degree-corrected spectral clustering, with a smoothing term to promote similarity across time periods. We prove that this method converges to the global solution of a nonconvex optimization problem, which can be interpreted as the spectral relaxation of a smoothed $K$-means clustering objective. We also show that smoothing is applied in a time-varying and data-dependent manner; for example, when a drastic change point exists in the data, smoothing is automatically suppressed at the time of the change point. Finally, we show that the detected time-varying communities can be visualized through the use of sankey plots.