CMStatistics 2018: Start Registration
View Submission - CFE
A1713
Title: Sequential Gibbs particle filter algorithm with an application to stochastic volatility and jumps estimation Authors:  Jiri Witzany - University of Economics in Prague (Czech Republic) [presenting]
Milan Ficura - University of Economics in Prague (Czech Republic)
Abstract: The aim is to propose and test a novel particle filter method called sequential Gibbs particle filter which allows the estimation of complex latent state variable models with unknown parameters. The framework is applied to a stochastic volatility model with independent jumps in returns and volatility. The implementation is based on a novel design of adapted proposal densities making convergence of the model relatively efficient as verified on a testing dataset. The empirical study applies the algorithm to estimate stochastic volatility with jumps in returns and volatility model based on the Prague stock exchange returns. The results indicate surprisingly weak jump in returns components and a relatively strong jump in volatility components with jumps in volatility appearing at the beginning of crisis periods.