CMStatistics 2018: Start Registration
View Submission - CMStatistics
Title: Adaptive estimation of semi-parametric partially linear predictive regression under heteroskedasticity Authors:  Hsein Kew - Monash University (Australia) [presenting]
Abstract: Adaptive estimation is considered in semiparametric partially linear predictive regression model with unconditional heteroscedasticity of an unknown form. We develop an adaptive semiparametric estimator weighted by a non-parametric variance estimator. The weighted estimator is shown to deliver potentially large asymptotic efficiency gains over the conventional unweighted estimator. Monte Carlo simulations confirm this theoretical result. We implement the proposed estimation method by studying the in-sample predictability of US future stock returns using the commonly used financial variables as predictors.