CMStatistics 2018: Start Registration
View Submission - CMStatistics
B1412
Title: Numerical analysis of intracellular amino acid profiles of breast cancer cells Authors:  Jaesik Jeong - Chonnam National University (Korea, South) [presenting]
Abstract: Various efforts to understand the relationship between biological information and disease have been done using many different types of high-throughput data such as genomics and metabolomics. However, information obtained from previous studies was not satisfactory, implying that new direction of studies is in need. Thus, we have tried profiling intracellular free amino acids in normal and cancerous cells to extract some information about such relationship by way of the change in IFAA levels in response to the treatment of three kinase inhibitors. We define two measures such as relative susceptibility (RS) and relative efficacy (RE) to numerically quantify susceptibility of cell line to treatment and efficacy of treatment on cell line, respectively. We applied principal component analysis (PCA) to the intracellular free amino acids (IFAAs) of isogenic breast cells with oncogenic mutation in K-Ras or PI3K genes to investigate the change in IFAA levels in response to the treatment of three kinase inhibitors. Two-dimensional plot, which was graphically represented by using the first two principal components (PCs), enabled us to evaluate the treatment efficacy in cancerous cells in terms of the quantitative distance of two IFAA profiles from cancerous and normal cells with the same treatment condition.