CMStatistics 2018: Start Registration
View Submission - CMStatistics
B1323
Title: ABC methodology for controlled branching processes Authors:  Ines M del Puerto - University of Extremadura (Spain) [presenting]
Miguel Gonzalez Velasco - University of Extremadura (Spain)
Carmen Minuesa Abril - University of Extremadura (Spain)
Abstract: Controlled branching processes are stochastic growth population models in which the number of individuals with reproductive capacity in each generation is controlled by a random control function. The purpose is to examine the Approximate Bayesian Computation (ABC) methods and to propose appropriate summary statistics for them in the context of these processes. This methodology enables to approximate the posterior distribution of the parameters of interest satisfactorily without explicit likelihood calculations and under a minimal set of assumptions. In particular, the tolerance rejection algorithm, the sequential Monte Carlo ABC algorithm, and a post-sampling correction method are provided. The accuracy of the proposed methods are illustrated and compared with a ``likelihood free'' Markov chain Monte Carlo technique by the way of a simulated example developed with the statistical software R.