CMStatistics 2018: Start Registration
View Submission - CMStatistics
Title: On the geometry of Bayesian inference Authors:  Miguel de Carvalho - School of Mathematics, University of Edinburgh (Portugal)
Garritt Page - Brigham Young University (United States)
Bradley Barney - University of Utah (United States) [presenting]
Abstract: A geometric interpretation to Bayesian inference is provided which allows the introduction of a natural measure of the level of agreement between priors, likelihoods, and posteriors. The starting point for the construction of our geometry is the observation that the marginal likelihood can be regarded as an inner product between the prior and the likelihood. A key concept in our geometry is that of compatibility, a measure which is based on the same construction principles as Pearson correlation, but which can be used to assess how much the prior agrees with the likelihood, to gauge the sensitivity of the posterior to the prior, and to quantify the coherency of the opinions of two experts. Estimators for all the quantities involved in our geometric setup are discussed, which can be directly computed from the posterior simulation output. Some examples are used to illustrate our methods, including data related to on-the-job drug usage, midge wing length, and prostate cancer.