CMStatistics 2018: Start Registration
View Submission - CMStatistics
Title: A Bayesian Mallows approach to non-transitive pair comparison data: Application to sounds perception Authors:  Marta Crispino - University of Oslo (Norway) [presenting]
Valeria Vitelli - University of Oslo (Norway)
Arnoldo Frigessi - University of Oslo (Norway)
Elja Arjas - University of Helsinki (Finland)
Natasha Barrett - Norwegian academy of music (Norway)
Abstract: The focus is on learning how listeners perceive sounds as having human origins. An experiment was performed with a series of electronically synthesized sounds, and listeners were asked to compare them in pairs. We propose a Bayesian probabilistic method to learn individual preferences from non-transitive pairwise comparison data, as happens when one (or more) individual preferences in the data contradicts what is implied by the others. We build a Bayesian Mallows model in order to handle non-transitive data, with a latent layer of uncertainty which captures the generation of preference misreporting. We then develop a mixture extension of the Mallows model, able to learn individual preferences in a heterogeneous population. The results of our analysis of the musicology experiment are of interest to electroacoustic composers and sound designers, and to the audio industry in general, whose aim is to understand how computer generated sounds can be produced in order to sound more human.