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Density classif. Methods Funct. Setting SmBP Approx Clustering Discriminant

Multivariate Framework

Consider

a random vector

X : (Ω,F ,P)→ (Rd ,B)

with positive density f

a partition of Ω in G sub-populations: {Ωg , g = 1, . . . ,G}
the group random variable Y :

Y (ω) = g if ω ∈ Ωg

P (Y = g) = πg > 0,
G∑

g=1

πg = 1.

f (x |g), the density function of (X |Y = g)
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Density classif. Methods Funct. Setting SmBP Approx Clustering Discriminant

Multivariate Framework

Mixture Model

f (x) =
G∑

g=1

πg f (x |g) , x ∈ Rd

This is the starting point to

Model–based classification

1 If Y is a latent/unobserved variable

=⇒ f (x) carries the information on the mixture
=⇒ unsupervised classification (clustering)

2 If Y is observed

=⇒ one can compare posterior probabilities πg f (x |g)
=⇒ supervised classification (discriminant) - Bayes rule
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Density classif. Methods Funct. Setting SmBP Approx Clustering Discriminant

Multivariate Clustering

GOAL

Data exploration

Identify patterns in data with useful interpretation for the user

Build “homogeneous” groups (clusters) of observations

Heuristic and Geometric procedures as hierarchical clustering,
k-means, . . . [Ward’63, Hartigan’75]

Probabilistic approaches as model-based algorithm, density
based clustering [Hartigan’75, Wishart’69]
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Density classif. Methods Funct. Setting SmBP Approx Clustering Discriminant

Multivariate Clustering

f (x) =
G∑

g=1

πg f (x |g) , x ∈ Rd

IDEA
Regions with high density identify clusters [Wishart’69]:

Fix c , consider the connected components of {f > c}

Clusters number depends on the threshold level c
In many cases, MODES depict structural differences among data
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Density classif. Methods Funct. Setting SmBP Approx Clustering Discriminant

Multivariate Discriminant Analysis

f (x) =
G∑

g=1

πg f (x |g) , x ∈ Rd

GOAL
To label a new incoming observation x

Bayes Classification Rule: assign x to the class
γ(x) ∈ {1, . . . ,G} with the highest posterior probability

γ(x) = arg max
g=1,...,G

P(Y = g |X = x)

If f (x |g) were known (f (x |g) > 0):

γ(x) = arg max
g=1,...,G

πg f (x |g).

7 / 55



Density classif. Methods Funct. Setting SmBP Approx Clustering Discriminant

Multivariate Discriminant Analysis

f (x) =
G∑

g=1

πg f (x |g) , x ∈ Rd

GOAL
To label a new incoming observation x

Bayes Classification Rule: assign x to the class
γ(x) ∈ {1, . . . ,G} with the highest posterior probability

γ(x) = arg max
g=1,...,G

P(Y = g |X = x)

If f (x |g) were known (f (x |g) > 0):

γ(x) = arg max
g=1,...,G

πg f (x |g).

7 / 55



Density classif. Methods Funct. Setting SmBP Approx Clustering Discriminant

Multivariate Discriminant Analysis

f (x) =
G∑

g=1

πg f (x |g) , x ∈ Rd

GOAL
To label a new incoming observation x

Bayes Classification Rule: assign x to the class
γ(x) ∈ {1, . . . ,G} with the highest posterior probability

γ(x) = arg max
g=1,...,G

P(Y = g |X = x)

If f (x |g) were known (f (x |g) > 0):

γ(x) = arg max
g=1,...,G

πg f (x |g).

7 / 55



Density classif. Methods Funct. Setting SmBP Approx Clustering Discriminant

OUTLINE

1 Density oriented classification methods: a review

2 Functional Setting
Basic facts and the Small–Ball Probability
SmBP Asymptotics

3 Estimating the surrogate Density

4 SmBP Clustering

5 SmBP Discriminant Analysis
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Density classif. Methods Funct. Setting SmBP Approx Clustering Discriminant

Functional Setting

Consider

the Hilbert space H = (L2
[0,1], 〈·, ·〉 , ‖ · ‖)

X : (Ω,F ,P)→ (L2
[0,1],B) Random Curve (RC) with

Mean: µX= {E [X (t)] , t ∈ [0, 1]}
Covariance: Σ [·]= E [〈X − µX , ·〉 (X − µX )]
WLOG assume µX = 0.

G sub-populations Ωg of Ω with Y the group–variable

[Bosq’00, Ferraty,Vieu’06, Ramsay,Silverman’05]
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Density classif. Methods Funct. Setting SmBP Approx Clustering Discriminant

Example of Functional Data 1/2

Neuronal experiment on a monkey: (Voltage of neurons) vs. Time

0.0 0.2 0.4 0.6 0.8 1.0

−1
50

0
−1

00
0

−5
00

0
50

0
10

00
15

00

Time

GOAL
spike sorting: distinguish different activities of neurons (clustering)

[Thanks to Andrew Schwartz motorlab in Pittsburgh]
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Density classif. Methods Funct. Setting SmBP Approx Clustering Discriminant

Example of Functional Data 2/2

Berkeley growth curves: Boys (red), Girls (black)

5 10 15

80
10

0
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0
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0
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0
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0
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0

Growth curves

Age

H
ei

gh
t (

cm
)

GOAL
retrieve the gender of subjects (clustering if sex is treated as a hidden
variable, discriminant otherwise)

11 / 55



Density classif. Methods Funct. Setting SmBP Approx Clustering Discriminant

Functional Data Classification

PROBLEM

data belong to infinite dimensional space

Popular approaches ([Jacques,Preda’13] for a survey on clustering,
[Ferraty,Vieu’06, James,Hastie’01] for discriminant examples):

1 non-parametric approach:

Consider (semi)metrics for functional data
Use standard clustering techniques based on dissimilarities
Rewrite discriminant as a regression problem

2 two stage approaches:

Project data on some finite subspace (dim. reduction)
classification on basis expansion coefficients:

(non)Hierarchical techniques

3 model based approach:

Parametric mixture model for coefficients of some basis

12 / 55
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Density classif. Methods Funct. Setting SmBP Approx Clustering Discriminant

About the density of a random curve

GOAL: To extend density based classifications to functional data

¿What is a probability density for random curve?

(Multivariate case) f is the Radon-Nikodym derivative w.r.t.
the Lebesgue measure
(∞–dim case) 6 ∃ a measure ν playing the role of the Leb. one.

ν should be locally finite and translation-invariant:

Let B = {x ∈ H : ‖x‖ < 1} and {ξj}∞j=1 an orthonormal basis
of H.
Let Bj = {x ∈ H : ‖x − ξj/2‖ < 1/4}, with ν(Bj) = cost
Then Bi ∩Bj = ∅, i 6= j , B ⊃

⋃
Bj and ν(B) ≥

∑
j ν(Bj) =∞

13 / 55
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Let B = {x ∈ H : ‖x‖ < 1} and {ξj}∞j=1 an orthonormal basis
of H.
Let Bj = {x ∈ H : ‖x − ξj/2‖ < 1/4}, with ν(Bj) = cost
Then Bi ∩Bj = ∅, i 6= j , B ⊃

⋃
Bj and ν(B) ≥

∑
j ν(Bj) =∞
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Small–Ball Probability (SmBP)

GOAL: To extend density based classifications to functional data

¿What is a probability density for random curve?

“Lack” of probability density =⇒ IDEA: Look for a “surrogate”

Small-Ball Probability (SmBP) [Ferraty,Goia,Vieu’02]

ϕ(x , ε) = P (‖X − x‖ < ε) , x ∈ L2
[0,1], ε > 0

ϕ(x , ε) is used as a measure of local concentration

Tipical assumption:
ϕ(x , ε) = Ψ (x)φ (ε) + o (φ (ε)) , ε→ 0

Ψ = intensity of SmBP = density “surrogate”
φ = Volume parameter
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Some references
The limiting behaviour of the SmBP plays a key role in

small deviations theory:
[Li,Shao’01]
[Lifshits’12]

functional regression:
[Ferraty,Vieu’06]
[Ferraty,Mas,Vieu’07]
applications:

to estimate the functional mode
[Gasser, Hall, Presnell’98]
[Delaigle,Hall’10]
[Ferraty,Kudraszow,Vieu’12]
in classifications problems for functional data
[Delsol,Louchet’14]
[B.,Goia’16a]
[Ciollaro,Genovese,Wang’16]
. . .
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SmBP Asymptotic: fixed d ∈ N
¿Under what conditions ϕ(x , ε) ≈ Ψ (x)φ (ε) , ε→ 0?

Consider:

{ξj}∞j=1 any orthonormal basis of L2
[0,1] and θj = 〈X , ξj〉

{λj = Var (θj)}∞j=1 are decreasingly ordered

Assume:

θ = (θ1, . . . , θd)′ admits a smooth pdf fd
supj≥1(x2

j /λj) <∞, with xj = 〈x , ξj〉

Proposition [B.,Goia’16b]

Fix d . As ε→ 0, ϕ(x , ε) ∼ fd(x)Vd (ε)R(x , ε, d)

Vd(ε) = volume of the d–dimensional ball of radius ε.

R(x , ε, d) = E
[
(1− S)d/2 I{S≤1}

]
S = S(x , ε, d) = 1

ε2

∑
j≥d+1 (θj − 〈x , ξj〉)2
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SmBP Asymptotic: fixed d ∈ N
Proposition [B.,Goia’16b]
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and S = 1

ε2

∑
j≥d+1

(
θj − 〈x , ξj 〉

)2

Vd (ε) = volume of the d–dimensional ball of radius ε.

Some settings lead to define an intensity Ψ(x) of the SmBP:

1 R(x , ε, d) is independent on x ,
Ex.: when 〈x , ξj〉 = 0 for any j ≥ d0 + 1
(e.g. the Gaussian processes are included: for any d ≥ d0,

Ψ(x) = exp
{
−
∑

j≤d0
x2
j /(2λj)

}
)

2 ∃d0 s.t. ∀d ≥ d0, R(x , ε, d) = 1,
Ex.: X is a d0–dimensional process, Ψ(x) = fd0 (x)

3

{
R(x , ε, d)→ 1,
ϕ(x , ε) ∼ fd(x)Vd(ε),

ε→ 0, d(ε)→∞.
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SmBP Asymptotic: let d(ε)→∞

Consider:

{λj , ξj}∞j=1 eigenelements of Σ[·]
(Karhunen-Loève) X (t)=

∑∞
j=1 θjξj(t), t ∈ [0, 1]

θj = 〈X , ξj〉 principal components (PCs) of X satisfying
E [θj ] = 0, Var (θj) = λj , E [θjθj′ ] = 0, j 6= j ′

Assume:

θ = (θ1, . . . , θd)′ admits a smooth pdf fd
supj≥1(x2

j /λj) <∞, with xj = 〈x , ξj〉
{λj}∞j=1 decays to zero exponentially or faster
(the spectrum of Σ is rather concentrate)

Proposition [B.,Goia’16b]

As ε→ 0, it is possible to choose d = d(ε)→∞ so that:
ϕ (x , ε) ∼ fd (x1, . . . , xd)φ (d , ε)

This generalizes [Delaigle,Hall’10] where PCs are independent

18 / 55
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SmBP Asymptotic: let d(ε)→∞

Proof Sketch.
STEP 1. Fix d ∈ N. Taylor leads to∣∣∣∣ϕ(x , ε)

fdVdR
− 1

∣∣∣∣ ≤ Cε2

λd

STEP 2. Use the {λj} decay to choose d = d(ε) so that

d →∞, 1− C
d + 2

ε2

∑
j≥d+1

λj ≤ R ≤ 1

That is R(x , ε, d(ε))→ 1 as ε→ 0.
STEP 3. Errors in 1-2 are controlled at the same time exploiting
{λj} decay (the faster they decay, the smaller the total error is)
⇒ The basis provided by KL decomposition is OPTIMAL
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SmBP Asymptotic: comment 1/3

ϕ(x , ε) ∼ fd(x)φ(d , ε) as ε→ 0 and d(ε)→∞

In general, fd still depends on ε through d(ε)
=⇒ it is not an intensity of the SmBP
BUT, some settings lead to an intensity Ψ(x) of the SmBP:

If {θj} are independent with density ∝ exp
{
−
(
|xj |/

√
λj
)p}

.

Then
fd(x)→ Ψ(x) = exp

{
− 1

2

∑∞
j=1

(
|xj |/

√
λj
)p }

, for any

x ∈ H
is an intensity for the SmBP (Gaussian processes are included
in this family).
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SmBP Asymptotic: comment 2/3

ϕ(x , ε) ∼ fd(x)φ(d , ε) as ε→ 0 and d(ε)→∞

The form of the volumetric term φ(d , ε) depends on the
eigenvalues decay rate. As example:

Exponential decay (e.g. λj = e−βj
α
, β > 0, α ≥ 1):

λ−1
d

∑
j≥d+1

λj < C , ∀d

φ(d , ε) = exp
{

1
2d
[
log(2πeε2)− log(d) + δ(d , α)

]}
Hyper-exponential decay (e.g. λj = e−βj

α
, β > 0, α > 1):

dλ−1
d

∑
j≥d+1

λj = o (1) , as d →∞

φ(d , ε) = εdπd/2

Γ(d/2+1) (Volume of a d-dim ball)
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SmBP Asymptotic: comment 3/3

ϕ(x , ε) ∼ fd(x)φ(d , ε) as ε→ 0 and d(ε)→∞

There are situations in which ϕ ∼ fd(x)φ(d , ε) for slower (than
exponential) decays. E.g. Wiener process:

λj ∼ j−2, ϕ(x , ε) ∼ exp
{
−1/2

∫ 1
0 x ′(t)dt

}
φ(ε)
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SmBP Mixture

Consider the conditioned SmBP

ϕ (x , ε|g) = P (‖X − x‖ < ε | Y = g ) g = 1, . . . ,G ,

Mixture

+ Factorization

ϕ (x , ε) =
G∑

g=1

πgϕ (x , ε|g)

∼ fd(x1, . . . , xd)φ(d , ε), ε→ 0

∼
G∑

g=1

πg fdg (x1, . . . , xdg |g)φ(dg , ε)

Under suitable assumptions on Σ, as ε→ 0:
fd(x1, . . . , xd) ∼

∑G
g=1 πg fd(x1, . . . , xd |g), ε→ 0

=⇒ discriminant analysis using πg fd(x |g).
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OUTLINE

1 Density oriented classification methods: a review

2 Functional Setting

3 Estimating the surrogate Density
Theoretical Aspects
Empirical Performances

4 SmBP Clustering

5 SmBP Discriminant Analysis

24 / 55



Density classif. Methods Funct. Setting SmBP Approx Clustering Discriminant

Estimating the surrogate Density

Multivariate kernel density estimator:

f̂d ,n

(
Π̂dx

)
=

1

n

n∑
i=1

KH

(∥∥∥Π̂d (Xi − x)
∥∥∥) , Π̂dx ∈ Rd ,

where:

KH (u) = det (H)−1/2 K
(
H−1/2u

)
,

K kernel function,

H symmetric semi-definite positive d × d matrix,

Π̂d projection operator over the subspace spanned by the first
d eigenfunctions of Σ̂n

Πd is estimated:
¿is the rate of convergence the same as when Πd is known?
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Estimating the surrogate Density

Consider Hn = h2
nI and suppose:

(B.1) fd (x) > 0 and p times differentiable;
(B.2) hn → 0 and nhdn/ log n→∞ as n→∞;
(B.3) K is a density, Lipschitz and bounded with cpct. support;
(B.4) ∃s, κ > 0 : E [‖X − x‖m] ≤ m!sκm−2/2.

[B.,Goia’16b]

Assume (B.1)–(B.4) with p > (3d + 2) /2 and consider the optimal
bandwidth

c1n
− 1

2p+d ≤ hn ≤ c2n
− 1

2p+d c1, c2 > 0.
Then, as n→∞ and uniformly in Rd

E
[
fd (x)− f̂n (x)

]2
= O

(
n−2p/(2p+d)

)
.

26 / 55



Density classif. Methods Funct. Setting SmBP Approx Clustering Discriminant

Estimating the surrogate Density

Consider Hn = h2
nI and suppose:

(B.1) fd (x) > 0 and p times differentiable;
(B.2) hn → 0 and nhdn/ log n→∞ as n→∞;
(B.3) K is a density, Lipschitz and bounded with cpct. support;
(B.4) ∃s, κ > 0 : E [‖X − x‖m] ≤ m!sκm−2/2.

[B.,Goia’16b]

Assume (B.1)–(B.4) with p > (3d + 2) /2 and consider the optimal
bandwidth

c1n
− 1

2p+d ≤ hn ≤ c2n
− 1

2p+d c1, c2 > 0.
Then, as n→∞ and uniformly in Rd

E
[
fd (x)− f̂n (x)

]2
= O

(
n−2p/(2p+d)

)
.

26 / 55



Density classif. Methods Funct. Setting SmBP Approx Clustering Discriminant

Finite dimensional process



X (t) = a
√

2/π sin (t) (the random process)

a ∼
{

pdf fa
E[a] = 0, Var(a) = 1,

}
(the only random part)

t ∈ [0, π]

x (t) = b
√

2/π sin (t) (center of the ball)
b fixed value in R

In this setting, it holds:
ϕ (x , ε) ∼ f1 (x1) επ1/2/Γ (1/2 + 1) = 2fa (b) ε.

(X1, . . . ,Xn) sample drawn from X

we compare fa with the 1–dim estimator f̂1

27 / 55



Density classif. Methods Funct. Setting SmBP Approx Clustering Discriminant

Finite dimensional process



X (t) = a
√

2/π sin (t) (the random process)

a ∼
{

pdf fa
E[a] = 0, Var(a) = 1,

}
(the only random part)

t ∈ [0, π]

x (t) = b
√

2/π sin (t) (center of the ball)
b fixed value in R

In this setting, it holds:
ϕ (x , ε) ∼ f1 (x1) επ1/2/Γ (1/2 + 1) = 2fa (b) ε.

(X1, . . . ,Xn) sample drawn from X

we compare fa with the 1–dim estimator f̂1

27 / 55



Density classif. Methods Funct. Setting SmBP Approx Clustering Discriminant

Finite dimensional process



X (t) = a
√

2/π sin (t) (the random process)

a ∼
{

pdf fa
E[a] = 0, Var(a) = 1,

}
(the only random part)

t ∈ [0, π]

x (t) = b
√

2/π sin (t) (center of the ball)
b fixed value in R

In this setting, it holds:
ϕ (x , ε) ∼ f1 (x1) επ1/2/Γ (1/2 + 1) = 2fa (b) ε.

(X1, . . . ,Xn) sample drawn from X

we compare fa with the 1–dim estimator f̂1

27 / 55



Density classif. Methods Funct. Setting SmBP Approx Clustering Discriminant

Finite dimensional process

Relative MSE:
∑

b

[
f̂1
(
x̂b1
)
− fa (b)

]2
/
∑

b f
2
a (b)

1000 Monte Carlo replications varying the sample size n and
the distribution

a ∼ N (0, 1) a ∼ t (5) /
√

5/3 a ∼
(
χ2 (8)− 8

)
/4

b ∈ [−4, 4] b ∈ [−4, 4] b ∈ [−2, 6]
n Mean Std. Mean Std. Mean Std.
50 3.235 (2.681) 5.921 (2.557) 4.081 (2.842)

100 1.860 (1.444) 4.775 (1.503) 2.401 (1.619)
200 1.091 (0.824) 4.138 (0.878) 1.422 (0.887)
500 0.546 (0.355) 3.737 (0.477) 0.753 (0.443)

1000 0.330 (0.220) 3.606 (0.327) 0.453 (0.233)

RMSE (×102) decreases as the sample size increases:
better estimates of projections θ̂ and x̂b

better performances of the kernel estimator

Shape of distributions matters: long tails and asymmetries
worse estimates
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Finite dimensional process

1000 Monte Carlo replications varying b with fixed sample size
n = 200

Absolute percentage errors (APE) =
∣∣∣f̂1 (x̂b1 )− fa (b)

∣∣∣ /fa (b)
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Estimate worsens at the edges due to limitations of kernel density
estimator in evaluate the tails.
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Finite dimensional process
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Infinite dimensional process

X Stand. Brownian Motion on [0, 1] (λj ∼ cost · j−2).

x (t) = b 2
√

2
π sin

(
πt
2

)
, t ∈ [0, 1] , b ∈ R

ϕ (x , ε) ∼ exp
{
−b2/2

}
ϕ (0, ε) , as ε→ 0,

1000 MC replication of BM sample (X1, . . . ,Xn)

the used dimension d varies in 1, . . . , 5

b ∈ [−4, 4]
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Infinite dimensional process

n d = 1 d = 2 d = 3 d = 4 d = 5
50 3.36 (2.51) 7.20 (3.73) 13.53 (7.34) 22.03 (12.05) 31.90 (15.87)

100 1.95 (1.20) 4.82 (2.59) 9.47 (5.54) 15.86 (8.71) 23.99 (12.27)
200 1.16 (0.72) 3.14 (1.60) 6.64 (3.77) 11.51 (6.30) 17.89 (9.48)
500 0.57 (0.33) 1.78 (0.93) 4.17 (2.36) 7.77 (4.23) 12.96 (6.88)

1000 0.35 (0.19) 1.15 (0.63) 2.82 (1.64) 5.86 (3.13) 10.09 (5.43)

Fix d , RMSE reduces (both in mean and var.) increasing n

Fix n, RMSE increases (both in mean and var.) with d (curse
of dim.)

d vs. n: it is possible to use large d at the cost of use large
samples (read diagonally the table).
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Multivariate Clustering

f (x) =
G∑

g=1

πg f (x |g) , x ∈ Rd

IDEA
Regions with high density identify clusters [Wishart’69]:

Fix c , consider the connected components of {f > c}

Clusters number depends on the threshold level c
In many cases, MODES depict structural differences among data
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SmBP Mixture

Consider the conditioned SmBP

ϕ (x , ε|g) = P (‖X − x‖ < ε | Y = g ) g = 1, . . . ,G ,

Mixture + Factorization

ϕ (x , ε) =
G∑

g=1

πgϕ (x , ε|g) ∼ fd(x1, . . . , xd)φ(d , ε), ε→ 0

∼
G∑

g=1

πg fdg (x1, . . . , xdg |g)φ(dg , ε)

Surrogate density fd :

carries spatial information on the mixture

endorses “density oriented” clustering approach on fd

Under suitable assumptions on Σ, as ε→ 0:
fd(x1, . . . , xd) ∼

∑G
g=1 πg fd(x1, . . . , xd |g), ε→ 0

=⇒ discriminant analysis using πg fd(x |g).
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SmBP Clustering

Consider the sample {(X1,Y1), . . . , (Xn,Yn)} drawn from (X ,Y )

Xi are observed

the group variables Yi are latent.

GOAL
To determine

the range of Y (i.e. G )

for each Xi , the membership group (that is the value of Yi )

METHOD
Regions with “locally high surrogate density (fd)” identify groups
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Algorithm

1 Estimate covariance operator and eigenelements;

2 Fix d , compute f̂d ,n, and look for its local maxima m̂d ,g

(g = 1, . . . , Ĝ );

3 Finding Prototypes: for each g in {1, . . . , Ĝ}, the g -th
“prototypes” group is formed by those Xi whose estimated
PCs belong to the largest connected iso-surface of f̂d ,n that
contains only the maximum md ,g .

4 Label the unclassified Xi with the K̂ prototypes groups by
means of a k-NN procedure.
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Comments

Proposed method ⇐⇒ local adaptive threshold
Hartigan ⇐⇒ global threshold
([Cuevas,Febreo,Fraiman’00, Cuevas,Febrero,Fraiman’01] -
multivariate)

Distribution-Free: no distributional assumptions on fd
([Jacques,Preda’13, Jacques,Preda’14]: gaussian finite
mixture)

Dependent Approach: PCs are just uncorrelated
([Jacques,Preda’13, Jacques,Preda’14]: PCs independent)

Tuning d (or ε) and/or tuning the bandwidth matrix lead to
different phenomenon scales
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Example: Synthetic Data

X
(g)
i (t) =

L∑
l=0

√
λlτ

(g)
i ,l ϕl(t),

t ∈ [0, 1], i = 1, . . . ,N, g = 1, . . . ,G .

{ϕl(t)}l Fourier Basis

λl = 0.7× 3−l (l = 1, . . . , L = 150), so that the first 3 PCs
explain always more than 99%

G = 2 groups and N = 300 curves for each group

uncorrelated but dependent coefficients (τ
(g)
i ,l )Ll=1 so that the

first 3 PCs looks like two bound up “bananas”.
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Example: Synthetic Data
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Example: Synthetic Data

Maximum iso–surfaces (prototypes)
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Example: Synthetic Data

d = 3 (FEV criterion)
400 Monte Carlo replications

Algorithm Miscl. Error Ĝ

Mean St. Dev. q0.5 q0.75 q0.9

SmBP 0.088 0.174 2 2 2
Functional K-means (G = 2) 0.377 0.068 − − −
Gaussian Mixture (G = 2) 0.153 0.106 − − −
GM BIC selection 0.666 0.034 9 10 11
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Example: Growth Curves

d = 3 (FEV) - 97.9% correct classification with respect sex
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Example: Neuronal data

Iso–surfaces and Clusters
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OUTLINE

1 Density oriented classification methods: a review

2 Functional Setting

3 Estimating the surrogate Density

4 SmBP Clustering

5 SmBP Discriminant Analysis
SmBP Mixture and Discriminant
Discriminant Examples
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Multivariate Discriminant Analysis

f (x) =
G∑

g=1

πg f (x |g) , x ∈ Rd

GOAL
To label a new incoming observation x

Bayes Classification Rule: assign x to the class
γ(x) ∈ {1, . . . ,G} with the highest posterior probability

γ(x) = arg max
g=1,...,G

P(Y = g |X = x)

If f (x |g) were known (f (x |g) > 0):

γ(x) = arg max
g=1,...,G

πg f (x |g).
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Generalized Bayes Classification Rule

X and Y are observed
Consider the mixture of SmBP

ϕ (x , ε) =
G∑

g=1

πgϕ (x , ε|g) , ε > 0.

Generalized Classification Rule: assign a new functional observation
x to g -th group for which, as ε tends to 0,

P(Y = g | ‖X − x‖ < ε)

P(Y = g ′| ‖X − x‖ < ε)
> 1, for any g ∈ {1, . . . ,G} , g ′ 6= g .

[B.,Goia’16a]

The Generalized Classification Rule is equivalent to

γ(x , d) = arg max
g=1,...,G

πg fd(x |g) as d →∞

46 / 55



Density classif. Methods Funct. Setting SmBP Approx Clustering Discriminant

Generalized Bayes Classification Rule

X and Y are observed
Consider the mixture of SmBP

ϕ (x , ε) =
G∑

g=1

πgϕ (x , ε|g) , ε > 0.

Generalized Classification Rule: assign a new functional observation
x to g -th group for which, as ε tends to 0,

P(Y = g | ‖X − x‖ < ε)

P(Y = g ′| ‖X − x‖ < ε)
> 1, for any g ∈ {1, . . . ,G} , g ′ 6= g .

[B.,Goia’16a]

The Generalized Classification Rule is equivalent to

γ(x , d) = arg max
g=1,...,G

πg fd(x |g) as d →∞

46 / 55



Density classif. Methods Funct. Setting SmBP Approx Clustering Discriminant

Generalized Bayes Classification Rule

X and Y are observed
Consider the mixture of SmBP

ϕ (x , ε) =
G∑

g=1

πgϕ (x , ε|g) , ε > 0.

Generalized Classification Rule: assign a new functional observation
x to g -th group for which, as ε tends to 0,

P(Y = g | ‖X − x‖ < ε)

P(Y = g ′| ‖X − x‖ < ε)
> 1, for any g ∈ {1, . . . ,G} , g ′ 6= g .

[B.,Goia’16a]

The Generalized Classification Rule is equivalent to

γ(x , d) = arg max
g=1,...,G

πg fd(x |g) as d →∞

46 / 55



Density classif. Methods Funct. Setting SmBP Approx Clustering Discriminant

Proof Sketch

Bayes: P(Y = g | ‖X − x‖ < ε) =
πgϕ (x , ε|g)

ϕ (x , ε)

Factorization for each group: as ε→ 0

P(Y = g | ‖X − x‖ < ε)

P(Y = g ′ | ‖X − x‖ < ε)
∼

πg fdg (x |g)φ(dg , ε)

πg ′fdg′ (x |g ′)φ(dg ′ , ε)

fdg (x |g) = joint density of the first dg PCs of Σg (cov. of
g -th group)

Spectrum decay of Σ controls the one of Σg (min–max
principle) =⇒ choose the same dg = d for any g

Simplification leads to Thesis.
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Estimate the Classifier 1/2

Consider

{(X1,Y1) , . . . , (Xn,Yn)} sample from (X ,Y )

dg = d for each g = 1, . . . ,G

Π̂g ,d = proj.oper. over the subspace spanned by the first d

eigenfunctions of Σ̂g

A kernel estimator for γ(x , d) is:

γ̂n(x , d) = arg max
g=1,...,G

1

n

n∑
i=1

I{Yi=g} KHg

(∥∥∥Π̂g ,d (Xi − x)
∥∥∥)
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Estimate the Classifier 2/2

Consider the Bayes probability of error

L? = min
γ

P (γ (X ) 6= Y )

and the conditional probability of error

Ln = P (γ̂n (X , d) 6= Y | {(X1,Y1) , . . . , (Xn,Yn)})

Assume that there exists a positive integer d∗ such that
γ(x , d) = γ(x , d∗) for any d ≥ d∗.

[B.,Goia’16a]

Take Hg = hg I .

Ln −→ L? in probability n→∞
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Comments

Proposed method ⇐⇒ Bayes Discrimination based on PCs
(compare with)

[James,Hastie’01] ⇐⇒ projective approach based on PCs
Gaussian Mixture

Distribution-Free: no distributional assumptions on fd

Model-based approach theoretically justified (not only pure
projective)

Indeed, if eigenvalues decay of Σ is slow we can not ensure
that dg = d =⇒ the volume terms φ can not be neglected
(insufficiency of pure projective approach)

Curse-of-dimensionality affects performances of the
methodology
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Example: Synthetic data

Two Bananas data-set with πg = 0.5
Sample of size n = 300 split in two parts:

training-sets (nin = 200) + test-set (nout = 100)
Out-of-sample misclassification error over 100 MC replications
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Example: Growth curves

Out-of-sample misclassification errors over 100 MC replications
(training-set is 2/3 of the sample)
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Conclusions

We introduced conditions to obtain a factorization of the
SmBP

SmBP ∼ Intensity × Volume

We use the intensity term as surrogate density in classification
motivating theoretically the use of PCs

Unsupervised classification: High-Intensity Region Principle

Supervised classification: Bayes Rule Generalization

Performances are studied on simulated and real dataset
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