Classification methods for functional data 2017 CRoNoS Spring Course on Multivariate methods with R

Enea Bongiorno

Cyprus University of Technology, 8-10/04/2017

OUTLINE

1 Density oriented classification methods: a review

2 Functional Setting

- 3 Estimating the surrogate Density
- 4 SmBP Clustering
- 5 SmBP Discriminant Analysis

Funct. Setting 0000000 00000000 <mark>SmBP Appro</mark> 00 00000 Clustering 00000 000000 Discriminant 000000 00

Multivariate Framework

Consider

a random vector

$$X:(\Omega,\mathcal{F},\mathbb{P}) o(\mathbb{R}^d,\mathcal{B})$$

with positive density f

Funct. Setting 0000000 00000000 <mark>SmBP Appro</mark> 00 00000 Clustering 00000 000000 Discriminant 000000 00

Multivariate Framework

Consider

a random vector

$$X:(\Omega,\mathcal{F},\mathbb{P})
ightarrow(\mathbb{R}^d,\mathcal{B})$$

with positive density f

• a partition of Ω in G sub-populations: $\{\Omega_g, g = 1, \dots, G\}$

Funct. Setting 0000000 00000000 SmBP Approx 00 00000 Clustering 00000 000000 Discriminant 000000 00

Multivariate Framework

Consider

a random vector

$$X:(\Omega,\mathcal{F},\mathbb{P}) o(\mathbb{R}^d,\mathcal{B})$$

with positive density f

• a partition of Ω in G sub-populations: $\{\Omega_g, g = 1, \dots, G\}$

• the group random variable Y:

$$egin{aligned} &Y\left(\omega
ight)=g & ext{if} & \omega\in\Omega_{g} \ &\mathbb{P}\left(Y=g
ight)=\pi_{g}>0, & \sum_{g=1}^{G}\pi_{g}=1. \end{aligned}$$

Funct. Setting 0000000 00000000 SmBP Approx 00 00000 Clustering 00000 000000 Discriminant 000000 00

Multivariate Framework

Consider

a random vector

$$X:(\Omega,\mathcal{F},\mathbb{P}) o(\mathbb{R}^d,\mathcal{B})$$

with positive density f

• a partition of Ω in ${\it G}$ sub-populations: $\{\Omega_g,g=1,\ldots,{\it G}\}$

• the group random variable Y:

$$egin{aligned} &Y\left(\omega
ight)=g & ext{if} & \omega\in\Omega_{g} \ &\mathbb{P}\left(Y=g
ight)=\pi_{g}>0, & \sum_{g=1}^{G}\pi_{g}=1. \end{aligned}$$

• f(x|g), the density function of (X|Y = g)

Funct. Setting 0000000 00000000 SmBP Appro 00 00000 Clustering 00000 000000 Discriminant 000000 00

Multivariate Framework

Mixture Model

$$f(x) = \sum_{g=1}^{G} \pi_{g} f(x|g), \qquad x \in \mathbb{R}^{d}$$

Funct. Setting 0000000 00000000 SmBP Approx 00 00000 Clustering 00000 000000 Discriminant 000000 00

Multivariate Framework

Mixture Model

$$f(x) = \sum_{g=1}^{G} \pi_{g} f(x|g), \qquad x \in \mathbb{R}^{d}$$

This is the starting point to

Model-based classification

Funct. Setting 0000000 00000000 SmBP Approx 00 00000 Clustering 00000 000000 Discriminant 000000 00

Multivariate Framework

Mixture Model

$$f(x) = \sum_{g=1}^{G} \pi_{g} f(x|g), \qquad x \in \mathbb{R}^{d}$$

This is the starting point to

Model-based classification

• If Y is a latent/unobserved variable

Funct. Setting 0000000 00000000 SmBP Approx 00 00000 Clustering 00000 000000 Discriminant 000000 00

Multivariate Framework

Mixture Model

$$f(x) = \sum_{g=1}^{G} \pi_{g} f(x|g), \qquad x \in \mathbb{R}^{d}$$

This is the starting point to

Model-based classification

If Y is a latent/unobserved variable

 \implies f(x) carries the information on the mixture

Funct. Setting 0000000 00000000 SmBP Approx 00 00000 Clustering 00000 000000 Discriminant 000000 00

Multivariate Framework

Mixture Model

$$f(x) = \sum_{g=1}^{G} \pi_{g} f(x|g), \qquad x \in \mathbb{R}^{d}$$

This is the starting point to

Model-based classification

• If Y is a latent/unobserved variable

- \implies f(x) carries the information on the mixture
 - \implies unsupervised classification (clustering)

Funct. Setting 0000000 00000000 SmBP Approx 00 00000 Clustering 00000 000000 Discriminant 000000 00

Multivariate Framework

Mixture Model

$$f(x) = \sum_{g=1}^{G} \pi_{g} f(x|g), \qquad x \in \mathbb{R}^{d}$$

This is the starting point to

Model-based classification

• If Y is a latent/unobserved variable

- \implies f(x) carries the information on the mixture
 - \implies unsupervised classification (clustering)

If Y is observed

 \implies one can compare posterior probabilities $\pi_g f(x|g)$

Funct. Setting 0000000 00000000 SmBP Approx 00 00000 Clustering 00000 000000 Discriminant 000000 00

Multivariate Framework

Mixture Model

$$f(x) = \sum_{g=1}^{G} \pi_{g} f(x|g), \qquad x \in \mathbb{R}^{d}$$

This is the starting point to

Model-based classification

• If Y is a latent/unobserved variable

- \implies f(x) carries the information on the mixture
 - \implies unsupervised classification (clustering)

- \implies one can compare posterior probabilities $\pi_g f(x|g)$
 - \implies supervised classification (discriminant) Bayes rule

Funct. Setting 0000000 00000000 SmBP Appro 00 00000 Clustering 00000 000000 Discriminant 000000 00

Multivariate Clustering

• Data exploration

Funct. Setting 0000000 00000000 SmBP Appro 00 00000 Clustering 00000 000000 Discriminant 000000 00

Multivariate Clustering

- Data exploration
- Identify patterns in data with useful interpretation for the user

Funct. Setting 0000000 00000000 SmBP Appro 00 00000 Clustering 00000 000000 Discriminant 000000 00

Multivariate Clustering

- Data exploration
- Identify patterns in data with useful interpretation for the user
- Build "homogeneous" groups (clusters) of observations

Funct. Setting 0000000 00000000 SmBP Appro

Clustering 00000 000000 Discriminant 000000 00

Multivariate Clustering

- Data exploration
- Identify patterns in data with useful interpretation for the user
- Build "homogeneous" groups (clusters) of observations
- Heuristic and Geometric procedures as hierarchical clustering, k-means, [Ward'63, Hartigan'75]

Funct. Setting 0000000 00000000 SmBP Appro 00 00000

Clustering 00000 000000 Discriminant 000000 00

Multivariate Clustering

- Data exploration
- Identify patterns in data with useful interpretation for the user
- Build "homogeneous" groups (clusters) of observations
- Heuristic and Geometric procedures as hierarchical clustering, k-means, [Ward'63, Hartigan'75]
- Probabilistic approaches as model-based algorithm, density based clustering [Hartigan'75, Wishart'69]

Funct. Setting 0000000 00000000 SmBP Appro

Clustering 00000 000000 Discriminant 000000 00

Multivariate Clustering

$$f(\mathbf{x}) = \sum_{g=1}^{G} \pi_{g} f(\mathbf{x}|g), \qquad \mathbf{x} \in \mathbb{R}^{d}$$

IDEA

Regions with high density identify clusters [Wishart'69]:

Funct. Setting 0000000 00000000 SmBP Appro

Clustering 00000 000000 Discriminant 000000 00

Multivariate Clustering

$$f(\mathbf{x}) = \sum_{g=1}^{G} \pi_{g} f(\mathbf{x}|g), \qquad \mathbf{x} \in \mathbb{R}^{d}$$

IDEA

Regions with high density identify clusters [Wishart'69]:

Funct. Setting 0000000 00000000 SmBP Appro

Clustering 00000 000000 Discriminant 000000 00

Multivariate Clustering

$$f(\mathbf{x}) = \sum_{g=1}^{G} \pi_{g} f(\mathbf{x}|g), \qquad \mathbf{x} \in \mathbb{R}^{d}$$

IDEA

Regions with high density identify clusters [Wishart'69]:

Funct. Setting 0000000 00000000 SmBP Appro

Clustering 00000 000000 Discriminant 000000 00

Multivariate Clustering

$$f(\mathbf{x}) = \sum_{g=1}^{G} \pi_{g} f(\mathbf{x}|g), \qquad \mathbf{x} \in \mathbb{R}^{d}$$

IDEA

Regions with high density identify clusters [Wishart'69]:

Funct. Setting 0000000 00000000 SmBP Appro

Clustering 00000 000000 Discriminant 000000 00

Multivariate Clustering

$$f(\mathbf{x}) = \sum_{g=1}^{G} \pi_{g} f(\mathbf{x}|g), \qquad \mathbf{x} \in \mathbb{R}^{d}$$

IDEA

Regions with high density identify clusters [Wishart'69]:

• Fix c, consider the connected components of $\{f > c\}$

Clusters number depends on the threshold level c In many cases, MODES depict structural differences among data

Funct. Setting

SmBP Appro

Clustering 00000 000000 Discriminant 000000 00

Multivariate Discriminant Analysis

$$f(x) = \sum_{g=1}^{G} \pi_{g} f(x|g), \qquad x \in \mathbb{R}^{d}$$

$\frac{\text{GOAL}}{\text{To label a new incoming observation } x}$

Funct. Setting 0000000 00000000 SmBP Appro 00 00000 Clustering 00000 000000 Discriminant 000000 00

Multivariate Discriminant Analysis

$$f(x) = \sum_{g=1}^{G} \pi_{g} f(x|g), \qquad x \in \mathbb{R}^{d}$$

GOAL

To label a new incoming observation x

• Bayes Classification Rule: assign x to the class $\gamma(x) \in \{1, ..., G\}$ with the highest posterior probability

$$\gamma(x) = rgmax_{g=1,...,G} \mathbb{P}(Y = g | X = x)$$

Funct. Setting 0000000 00000000 SmBP Approx 00 00000 Clustering 00000 000000 Discriminant 000000 00

Multivariate Discriminant Analysis

$$f(x) = \sum_{g=1}^{G} \pi_{g} f(x|g), \qquad x \in \mathbb{R}^{d}$$

GOAL

To label a new incoming observation x

• Bayes Classification Rule: assign x to the class $\gamma(x) \in \{1, ..., G\}$ with the highest posterior probability

$$\gamma(x) = \underset{g=1,...,G}{\operatorname{arg max}} \mathbb{P}(Y = g | X = x)$$

• If f(x|g) were known (f(x|g) > 0):

$$\gamma(x) = \underset{g=1,\dots,G}{\arg \max} \pi_g f(x|g).$$

Funct. Setting

SmBP Approx 00 00000

Clustering 00000 000000 Discriminant 000000 00

OUTLINE

Density oriented classification methods: a review

2 Functional Setting

- Basic facts and the Small-Ball Probability
- SmBP Asymptotics
- 3 Estimating the surrogate Density
- 4 SmBP Clustering
- 5 SmBP Discriminant Analysis

Funct. Setting

SmBP Appro 00 00000

Clustering 00000 000000 Discriminant 000000 00

Functional Setting

Consider

• the Hilbert space $H = (\mathcal{L}^2_{[0,1]}, \langle \cdot, \cdot \rangle, \| \cdot \|)$

Funct. Setting

SmBP Appro 00 00000

Clustering 00000 000000 Discriminant 000000 00

Functional Setting

Consider

- the Hilbert space $H = (\mathcal{L}^2_{[0,1]}, \langle \cdot, \cdot \rangle, \| \cdot \|)$
- $X : (\Omega, \mathcal{F}, \mathbb{P}) \to (\mathcal{L}^2_{[0,1]}, \mathcal{B})$ Random Curve (RC) with

Funct. Setting

SmBP Appro

Clustering 00000 000000 Discriminant 000000 00

Functional Setting

Consider

- the Hilbert space $H = (\mathcal{L}^2_{[0,1]}, \langle \cdot, \cdot \rangle, \|\cdot\|)$
- $X : (\Omega, \mathcal{F}, \mathbb{P}) \to (\mathcal{L}^2_{[0,1]}, \mathcal{B})$ Random Curve (RC) with

• Mean: $\mu_X = \{\mathbb{E}[X(t)], t \in [0, 1]\}$

Funct. Setting

SmBP Appro

Clustering 00000 000000 Discriminant 000000 00

Functional Setting

Consider

- the Hilbert space $H = (\mathcal{L}^2_{[0,1]}, \langle \cdot, \cdot \rangle, \| \cdot \|)$
- $X : (\Omega, \mathcal{F}, \mathbb{P}) \to (\mathcal{L}^2_{[0,1]}, \mathcal{B})$ Random Curve (RC) with
 - Mean: $\mu_{X} = \{ \mathbb{E}[X(t)], t \in [0, 1] \}$
 - Covariance: $\Sigma[\cdot] = \mathbb{E}[\langle X \mu_X, \cdot \rangle (X \mu_X)]$

Funct. Setting

SmBP Appro

Clustering 00000 000000 Discriminant 000000 00

Functional Setting

Consider

- the Hilbert space $H = (\mathcal{L}^{2}_{[0,1]}, \langle \cdot, \cdot \rangle, \| \cdot \|)$
- $X : (\Omega, \mathcal{F}, \mathbb{P}) \to (\mathcal{L}^2_{[0,1]}, \mathcal{B})$ Random Curve (RC) with
 - Mean: $\mu_X = \{\mathbb{E}[X(t)], t \in [0, 1]\}$
 - Covariance: $\Sigma[\cdot] = \mathbb{E}[\langle X \mu_X, \cdot \rangle (X \mu_X)]$
 - WLOG assume $\mu_X = 0$.

Funct. Setting

SmBP Appro

Clustering 00000 000000 Discriminant 000000 00

Functional Setting

Consider

- the Hilbert space $H = (\mathcal{L}^{2}_{[0,1]}, \langle \cdot, \cdot \rangle, \| \cdot \|)$
- $X : (\Omega, \mathcal{F}, \mathbb{P}) \to (\mathcal{L}^2_{[0,1]}, \mathcal{B})$ Random Curve (RC) with

• Mean:
$$\mu_X = \{\mathbb{E}\left[X\left(t\right)\right], t \in [0,1]\}$$

• Covariance: $\Sigma[\cdot] = \mathbb{E}[\langle X - \mu_X, \cdot \rangle (X - \mu_X)]$

• WLOG assume $\mu_X = 0$.

• G sub-populations Ω_g of Ω with Y the group-variable

Funct. Setting

SmBP Appro

Clustering 00000 000000 Discriminant 000000 00

Functional Setting

Consider

- the Hilbert space $H = (\mathcal{L}^{2}_{[0,1]}, \langle \cdot, \cdot \rangle, \| \cdot \|)$
- $X : (\Omega, \mathcal{F}, \mathbb{P}) \to (\mathcal{L}^2_{[0,1]}, \mathcal{B})$ Random Curve (RC) with
 - Mean: $\mu_X = \{\mathbb{E}[X(t)], t \in [0, 1]\}$
 - Covariance: $\Sigma[\cdot] = \mathbb{E}[\langle X \mu_X, \cdot \rangle (X \mu_X)]$
 - WLOG assume $\mu_X = 0$.
- G sub-populations Ω_g of Ω with Y the group-variable

[Bosq'00, Ferraty, Vieu'06, Ramsay, Silverman'05]

Funct. Setting

SmBP Approx

Clustering 00000 000000 Discriminant 000000 00

Example of Functional Data 1/2

Neuronal experiment on a monkey: (Voltage of neurons) vs. Time

GOAL

spike sorting: distinguish different activities of neurons (clustering)

[Thanks to Andrew Schwartz motorlab in Pittsburgh]

Funct. Setting

SmBP Appro

Clustering 00000 000000 Discriminant 000000 00

Example of Functional Data 2/2

Growth curves

Berkeley growth curves: Boys (red), Girls (black)

 $\mathsf{Heitricu}_{\mathsf{p}}$

GOAL

Age

retrieve the gender of subjects (clustering if sex is treated as a hidden variable, discriminant otherwise)
Funct. Setting

SmBP Appro

Clustering 00000 000000 Discriminant 000000 00

Functional Data Classification

PROBLEM data belong to infinite dimensional space

Funct. Setting

SmBP Appro

Clustering 00000 000000 Discriminant 000000 00

Functional Data Classification

PROBLEM data belong to infinite dimensional space

Popular approaches ([Jacques,Preda'13] for a survey on clustering, [Ferraty,Vieu'06, James,Hastie'01] for discriminant examples):

Funct. Setting

SmBP Appro

Clustering 00000 000000 Discriminant 000000 00

Functional Data Classification

PROBLEM data belong to infinite dimensional space

Popular approaches ([Jacques,Preda'13] for a survey on clustering, [Ferraty,Vieu'06, James,Hastie'01] for discriminant examples):

- Inon-parametric approach:
 - Consider (semi)metrics for functional data

Funct. Setting

SmBP Appro

Clustering 00000 000000 Discriminant 000000 00

Functional Data Classification

PROBLEM data belong to infinite dimensional space

Popular approaches ([Jacques,Preda'13] for a survey on clustering, [Ferraty,Vieu'06, James,Hastie'01] for discriminant examples):

- Consider (semi)metrics for functional data
- Use standard clustering techniques based on dissimilarities

Funct. Setting

SmBP Appro

Clustering 00000 000000 Discriminant 000000 00

Functional Data Classification

PROBLEM data belong to infinite dimensional space

Popular approaches ([Jacques,Preda'13] for a survey on clustering, [Ferraty,Vieu'06, James,Hastie'01] for discriminant examples):

- Consider (semi)metrics for functional data
- Use standard clustering techniques based on dissimilarities
- Rewrite discriminant as a regression problem

Funct. Setting

SmBP Appro

Clustering 00000 000000 Discriminant 000000 00

Functional Data Classification

PROBLEM data belong to infinite dimensional space

Popular approaches ([Jacques,Preda'13] for a survey on clustering, [Ferraty,Vieu'06, James,Hastie'01] for discriminant examples):

- Consider (semi)metrics for functional data
- Use standard clustering techniques based on dissimilarities
- Rewrite discriminant as a regression problem
- two stage approaches:

Funct. Setting

SmBP Appro 00 00000 Clustering 00000 000000 Discriminant 000000 00

Functional Data Classification

PROBLEM data belong to infinite dimensional space

Popular approaches ([Jacques,Preda'13] for a survey on clustering, [Ferraty,Vieu'06, James,Hastie'01] for discriminant examples):

- Consider (semi)metrics for functional data
- Use standard clustering techniques based on dissimilarities
- Rewrite discriminant as a regression problem
- two stage approaches:
 - Project data on some finite subspace (dim. reduction)

Funct. Setting

SmBP Appro 00 00000 Clustering 00000 000000 Discriminant 000000 00

Functional Data Classification

PROBLEM data belong to infinite dimensional space

Popular approaches ([Jacques,Preda'13] for a survey on clustering, [Ferraty,Vieu'06, James,Hastie'01] for discriminant examples):

- Consider (semi)metrics for functional data
- Use standard clustering techniques based on dissimilarities
- Rewrite discriminant as a regression problem
- two stage approaches:
 - Project data on some finite subspace (dim. reduction)
 - classification on basis expansion coefficients:

Funct. Setting

SmBP Appro

Clustering 00000 000000 Discriminant 000000 00

Functional Data Classification

PROBLEM data belong to infinite dimensional space

Popular approaches ([Jacques,Preda'13] for a survey on clustering, [Ferraty,Vieu'06, James,Hastie'01] for discriminant examples):

- Consider (semi)metrics for functional data
- Use standard clustering techniques based on dissimilarities
- Rewrite discriminant as a regression problem
- two stage approaches:
 - Project data on some finite subspace (dim. reduction)
 - classification on basis expansion coefficients:
 - (non)Hierarchical techniques

Funct. Setting

SmBP Appro 00 00000 Clustering 00000 000000 Discriminant 000000 00

Functional Data Classification

PROBLEM data belong to infinite dimensional space

Popular approaches ([Jacques,Preda'13] for a survey on clustering, [Ferraty,Vieu'06, James,Hastie'01] for discriminant examples):

- Consider (semi)metrics for functional data
- Use standard clustering techniques based on dissimilarities
- Rewrite discriminant as a regression problem
- 2 two stage approaches:
 - Project data on some finite subspace (dim. reduction)
 - classification on basis expansion coefficients:
 - (non)Hierarchical techniques
- Image of the second second

Funct. Setting

SmBP Appro 00 00000 Clustering 00000 000000 Discriminant 000000 00

Functional Data Classification

PROBLEM data belong to infinite dimensional space

Popular approaches ([Jacques,Preda'13] for a survey on clustering, [Ferraty,Vieu'06, James,Hastie'01] for discriminant examples):

- Consider (semi)metrics for functional data
- Use standard clustering techniques based on dissimilarities
- Rewrite discriminant as a regression problem
- 2 two stage approaches:
 - Project data on some finite subspace (dim. reduction)
 - classification on basis expansion coefficients:
 - (non)Hierarchical techniques
- Model based approach:
 - Parametric mixture model for coefficients of some basis

SmBP Approx

Clustering 00000 000000 Discriminant 000000 00

About the density of a random curve

GOAL: To extend density based classifications to functional data

SmBP Approx

Clustering 00000 000000 Discriminant 000000 00

About the density of a random curve

GOAL: To extend density based classifications to functional data

SmBP Approx

Clustering 00000 000000 Discriminant 000000 00

About the density of a random curve

GOAL: To extend density based classifications to functional data

¿What is a probability density for random curve?

• (Multivariate case) *f* is the Radon-Nikodym derivative w.r.t. the Lebesgue measure

SmBP Approx

Clustering 00000 000000 Discriminant 000000 00

About the density of a random curve

GOAL: To extend density based classifications to functional data

- (Multivariate case) *f* is the Radon-Nikodym derivative w.r.t. the Lebesgue measure
- (∞ -dim case) \nexists a measure ν playing the role of the Leb. one.

SmBP Approx

Clustering 00000 000000 Discriminant 000000 00

About the density of a random curve

GOAL: To extend density based classifications to functional data

- (Multivariate case) *f* is the Radon-Nikodym derivative w.r.t. the Lebesgue measure
- (∞ -dim case) \nexists a measure ν playing the role of the Leb. one. ν should be locally finite and translation-invariant:

SmBP Approx

Clustering 00000 000000 Discriminant 000000 00

About the density of a random curve

GOAL: To extend density based classifications to functional data

- (Multivariate case) *f* is the Radon-Nikodym derivative w.r.t. the Lebesgue measure
- (∞ -dim case) \nexists a measure ν playing the role of the Leb. one. ν should be locally finite and translation-invariant:
 - Let $B = \{x \in H : ||x|| < 1\}$ and $\{\xi_j\}_{j=1}^{\infty}$ an orthonormal basis of H.

SmBP Approx 00 00000 Clustering 00000 000000 Discriminant 000000 00

About the density of a random curve

GOAL: To extend density based classifications to functional data

- (Multivariate case) *f* is the Radon-Nikodym derivative w.r.t. the Lebesgue measure
- (∞ -dim case) \nexists a measure ν playing the role of the Leb. one. ν should be locally finite and translation-invariant:
 - Let $B = \{x \in H : ||x|| < 1\}$ and $\{\xi_j\}_{j=1}^{\infty}$ an orthonormal basis of H.
 - Let $B_j = \{x \in H : ||x \xi_j/2|| < 1/4\}$, with $\nu(B_j) = cost$

SmBP Approx 00 00000 Clustering 00000 000000 Discriminant 000000 00

About the density of a random curve

GOAL: To extend density based classifications to functional data

- (Multivariate case) *f* is the Radon-Nikodym derivative w.r.t. the Lebesgue measure
- (∞ -dim case) \nexists a measure ν playing the role of the Leb. one. ν should be locally finite and translation-invariant:
 - Let $B = \{x \in H : ||x|| < 1\}$ and $\{\xi_j\}_{j=1}^{\infty}$ an orthonormal basis of H.
 - Let $B_j = \{x \in H : ||x \xi_j/2|| < 1/4\}$, with $\nu(B_j) = cost$

SmBP Approx 00 00000 Clustering 00000 000000 Discriminant 000000 00

About the density of a random curve

GOAL: To extend density based classifications to functional data

- (Multivariate case) *f* is the Radon-Nikodym derivative w.r.t. the Lebesgue measure
- (∞ -dim case) \nexists a measure ν playing the role of the Leb. one. ν should be locally finite and translation-invariant:
 - Let $B = \{x \in H : ||x|| < 1\}$ and $\{\xi_j\}_{j=1}^{\infty}$ an orthonormal basis of H.
 - Let $B_j = \{x \in H : ||x \xi_j/2|| < 1/4\}$, with $\nu(B_j) = cost$

SmBP Appro» 00 00000 Clustering 00000 000000 Discriminant 000000 00

About the density of a random curve

GOAL: To extend density based classifications to functional data

- (Multivariate case) *f* is the Radon-Nikodym derivative w.r.t. the Lebesgue measure
- (∞ -dim case) \nexists a measure ν playing the role of the Leb. one. ν should be locally finite and translation-invariant:
 - Let $B = \{x \in H : ||x|| < 1\}$ and $\{\xi_j\}_{j=1}^{\infty}$ an orthonormal basis of H.
 - Let $B_j = \{x \in H : ||x \xi_j/2|| < 1/4\}$, with $\nu(B_j) = cost$
 - Then $B_i \cap B_j = \emptyset$, $i \neq j$, $B \supset \bigcup B_j$ and $\nu(B) \ge \sum_j \nu(B_j) = \infty$

Funct. Setting

SmBP Appro

Clustering 00000 000000 Discriminant 000000 00

Small–Ball Probability (SmBP)

GOAL: To extend density based classifications to functional data

Funct. Setting

SmBP Appro

Clustering 00000 000000 Discriminant 000000 00

Small–Ball Probability (SmBP)

GOAL: To extend density based classifications to functional data

¿What is a probability density for random curve? "Lack" of probability density \implies IDEA: Look for a "surrogate"

Funct. Setting

SmBP Appro

Clustering 00000 000000 Discriminant 000000 00

Small–Ball Probability (SmBP)

GOAL: To extend density based classifications to functional data

;What is a probability density for random curve? "Lack" of probability density \implies IDEA: Look for a "surrogate"

SMALL-BALL PROBABILITY (SmBP) [Ferraty, Goia, Vieu'02]

 $arphi(x,arepsilon) = \mathbb{P}\left(\|X-x\|<arepsilon
ight), \qquad x\in\mathcal{L}^2_{[0,1]}, arepsilon>0$

Funct. Setting

SmBP Appro

Clustering 00000 000000 Discriminant 000000 00

Small–Ball Probability (SmBP)

GOAL: To extend density based classifications to functional data

<code>¿What is a probability density for random curve?</code> "Lack" of probability density \implies IDEA: Look for a "surrogate"

SMALL-BALL PROBABILITY (SmBP) [Ferraty, Goia, Vieu'02]

$$arphi(x,arepsilon) = \mathbb{P}\left(\|X-x\|0$$

• $\varphi(x,\varepsilon)$ is used as a measure of local concentration

Funct. Setting

SmBP Appro

Clustering 00000 000000 Discriminant 000000 00

Small–Ball Probability (SmBP)

GOAL: To extend density based classifications to functional data

; What is a probability density for random curve? "Lack" of probability density \implies IDEA: Look for a "surrogate"

SMALL-BALL PROBABILITY (SmBP) [Ferraty, Goia, Vieu'02]

$$arphi(x,arepsilon) = \mathbb{P}\left(\|X-x\| < arepsilon
ight), \qquad x \in \mathcal{L}^2_{[0,1]}, arepsilon > 0$$

- $\varphi(x,\varepsilon)$ is used as a measure of local concentration
- Tipical assumption:

$$arphi(x,arepsilon)=\Psi\left(x
ight)\phi\left(arepsilon
ight)+o\left(\phi\left(arepsilon
ight)
ight),\qquadarepsilon
ightarrow0$$

Funct. Setting

SmBP Appro

Clustering 00000 000000 Discriminant 000000 00

Small–Ball Probability (SmBP)

GOAL: To extend density based classifications to functional data

; What is a probability density for random curve? "Lack" of probability density \implies IDEA: Look for a "surrogate"

SMALL-BALL PROBABILITY (SmBP) [Ferraty, Goia, Vieu'02]

$$arphi(x,arepsilon) = \mathbb{P}\left(\|X-x\| < arepsilon
ight), \qquad x \in \mathcal{L}^2_{[0,1]}, arepsilon > 0$$

- $\varphi(x,\varepsilon)$ is used as a measure of local concentration
- Tipical assumption:

 $arphi(x,arepsilon)=\Psi\left(x
ight)\phi\left(arepsilon
ight)+o\left(\phi\left(arepsilon
ight)
ight),\qquadarepsilon
ightarrow0$

 $\Psi = \text{intensity of SmBP} = \text{density "surrogate"}$

 $\phi = \mathsf{Volume} \mathsf{ parameter}$

Funct. Setting

SmBP Appro 00 00000 Clustering 00000 000000 Discriminant 000000 00

Some references

The limiting behaviour of the SmBP plays a key role in

• small deviations theory:

[Li,Shao'01] [Lifshits'12]

Funct. Setting

SmBP Appro 00 00000 Clustering 00000 000000 Discriminant 000000 00

Some references

The limiting behaviour of the SmBP plays a key role in

- small deviations theory:
 - [Li,Shao'01] [Lifshits'12]
- functional regression:

[Ferraty, Vieu'06] [Ferraty, Mas, Vieu'07]

Funct. Setting

SmBP Appro 00 00000 Clustering 00000 000000 Discriminant 000000 00

Some references

The limiting behaviour of the SmBP plays a key role in

- small deviations theory:
 - [Li,Shao'01] [Lifshits'12]
- functional regression: [Ferraty,Vieu'06]
 - [Ferraty, Mas, Vieu '07]
- applications:

Funct. Setting

SmBP Appro 00 00000

Clustering 00000 000000 Discriminant 000000 00

Some references

The limiting behaviour of the SmBP plays a key role in

- small deviations theory:
 - [Li,Shao'01] [Lifshits'12]
- functional regression:
 - [Ferraty, Vieu'06] [Ferraty, Mas, Vieu'07]
- applications:
 - to estimate the functional mode [Gasser, Hall, Presnell'98]
 [Delaigle,Hall'10]
 [Ferraty,Kudraszow,Vieu'12]

Funct. Setting

SmBP Appro 00 00000

Clustering 00000 000000 Discriminant 000000 00

Some references

The limiting behaviour of the SmBP plays a key role in

- small deviations theory:
 - [Li,Shao'01] [Lifshits'12]
- functional regression:

[Ferraty, Vieu'06] [Ferraty, Mas, Vieu'07]

- applications:
 - to estimate the functional mode

[Gasser, Hall, Presnell'98] [Delaigle,Hall'10] [Ferraty,Kudraszow,Vieu'12]

- in classifications problems for functional data
 - [Delsol,Louchet'14] [B.,Goia'16a] [Ciollaro,Genovese,Wang'16]

Funct. Setting

SmBP Appro 00 00000

Clustering 00000 000000 Discriminant 000000 00

Some references

The limiting behaviour of the SmBP plays a key role in

- small deviations theory:
 - [Li,Shao'01] [Lifshits'12]
- functional regression:

[Ferraty, Vieu'06] [Ferraty, Mas, Vieu'07]

- applications:
 - to estimate the functional mode

[Gasser, Hall, Presnell'98] [Delaigle,Hall'10] [Ferraty,Kudraszow,Vieu'12]

- in classifications problems for functional data [Delsol,Louchet'14]
 [B.,Goia'16a]
 - [Ciollaro, Genovese, Wang'16]
- . . .

Funct. Setting

SmBP Approx

Clustering 00000 000000 Discriminant 000000 00

SmBP Asymptotic: fixed $d \in \mathbb{N}$

¿Under what conditions $\varphi(x, \varepsilon) \approx \Psi(x) \phi(\varepsilon), \varepsilon \rightarrow 0$?

Funct. Setting

SmBP Approx

Clustering 00000 000000 Discriminant 000000 00

SmBP Asymptotic: fixed $d \in \mathbb{N}$

¿Under what conditions $\varphi(x,\varepsilon) \approx \Psi(x) \phi(\varepsilon), \varepsilon \rightarrow 0$?

- Consider:
 - $\{\xi_j\}_{j=1}^{\infty}$ any orthonormal basis of $\mathcal{L}^2_{[0,1]}$ and $\theta_j = \langle X, \xi_j \rangle$
 - $\{\lambda_j = Var(\theta_j)\}_{j=1}^{\infty}$ are decreasingly ordered

Funct. Setting

SmBP Approx

Clustering 00000 000000 Discriminant 000000 00

SmBP Asymptotic: fixed $d \in \mathbb{N}$

¿Under what conditions $\varphi(x,\varepsilon) \approx \Psi(x) \phi(\varepsilon), \varepsilon \rightarrow 0$?

- Consider:
 - $\{\xi_j\}_{j=1}^\infty$ any orthonormal basis of $\mathcal{L}^2_{[0,1]}$ and $heta_j = \langle X, \xi_j
 angle$
 - $\{\lambda_j = Var(\theta_j)\}_{j=1}^{\infty}$ are decreasingly ordered
- Assume:
 - $\boldsymbol{\theta} = (\theta_1, \dots, \theta_d)'$ admits a smooth pdf f_d
 - $\sup_{j\geq 1}(x_j^2/\lambda_j) < \infty$, with $x_j = \langle x, \xi_j \rangle$
Funct. Setting

SmBP Approx 00 00000 Clustering 00000 000000 Discriminant 000000 00

SmBP Asymptotic: fixed $d \in \mathbb{N}$

¿Under what conditions $\varphi(x,\varepsilon) \approx \Psi(x) \phi(\varepsilon), \varepsilon \rightarrow 0$?

- Consider:
 - $\{\xi_j\}_{j=1}^\infty$ any orthonormal basis of $\mathcal{L}^2_{[0,1]}$ and $heta_j = \langle X, \xi_j
 angle$
 - $\{\lambda_j = Var(\theta_j)\}_{j=1}^{\infty}$ are decreasingly ordered
- Assume:

•
$$\boldsymbol{\theta} = (\theta_1, \dots, \theta_d)'$$
 admits a smooth pdf f_d

•
$$\sup_{j\geq 1}(x_j^2/\lambda_j) < \infty$$
, with $x_j = \langle x, \xi_j \rangle$

Proposition [B., Goia'16b]

- Fix d. As $\varepsilon \to 0$, $\varphi(x, \varepsilon) \sim f_d(x) V_d(\varepsilon) \mathcal{R}(x, \varepsilon, d)$
 - $V_d(\varepsilon)$ = volume of the *d*-dimensional ball of radius ε .

•
$$\mathcal{R}(x,\varepsilon,d) = \mathbb{E}\left[(1-S)^{d/2}\mathbb{I}_{\{S\leq 1\}}\right]$$

•
$$S = S(x, \varepsilon, d) = \frac{1}{\varepsilon^2} \sum_{j \ge d+1} (\theta_j - \langle x, \xi_j \rangle)^2$$

Funct. Setting

SmBP Appro

Clustering 00000 000000 Discriminant 000000 00

SmBP Asymptotic: fixed $d \in \mathbb{N}$

Proposition [B., Goia'16b]

Fix d. As
$$\varepsilon \to 0$$
, $\varphi(x,\varepsilon) \sim f_d(x)V_d(\varepsilon)\mathcal{R}(x,\varepsilon,d)$

•
$$\mathcal{R}(x,\varepsilon,d) = \mathbb{E}\left[(1-S)^{d/2} \mathbb{I}_{\{S \leq 1\}} \right]$$
 and $S = \frac{1}{\varepsilon^2} \sum_{j \geq d+1} \left(\theta_j - \langle x, \xi_j \rangle \right)^2$

• $V_d(\varepsilon)$ = volume of the *d*-dimensional ball of radius ε .

Some settings lead to define an intensity $\Psi(x)$ of the SmBP:

• $\mathcal{R}(x, \varepsilon, d)$ is independent on x, Ex.: when $\langle x, \xi_j \rangle = 0$ for any $j \ge d_0 + 1$ (e.g. the Gaussian processes are included: for any $d \ge d_0$, $\Psi(x) = \exp\left\{-\sum_{j \le d_0} x_j^2/(2\lambda_j)\right\}$)

Funct. Setting

SmBP Appro

Clustering 00000 000000 Discriminant 000000 00

SmBP Asymptotic: fixed $d \in \mathbb{N}$

Proposition [B., Goia'16b]

Fix d. As
$$\varepsilon \to 0$$
, $\varphi(x,\varepsilon) \sim f_d(x)V_d(\varepsilon)\mathcal{R}(x,\varepsilon,d)$

•
$$\mathcal{R}(x,\varepsilon,d) = \mathbb{E}\left[(1-S)^{d/2} \mathbb{I}_{\{S \leq 1\}} \right]$$
 and $S = \frac{1}{\varepsilon^2} \sum_{j \geq d+1} \left(\theta_j - \langle x, \xi_j \rangle \right)^2$

• $V_d(\varepsilon)$ = volume of the *d*-dimensional ball of radius ε .

Some settings lead to define an intensity $\Psi(x)$ of the SmBP:

Ex.: X is a d_0 -dimensional process, $\Psi(x) = f_{d_0}(x)$

Funct. Setting

SmBP Appro

Clustering 00000 000000 Discriminant 000000 00

SmBP Asymptotic: fixed $d \in \mathbb{N}$

Proposition [B., Goia'16b]

Fix d. As
$$\varepsilon \to 0$$
, $\varphi(x,\varepsilon) \sim f_d(x)V_d(\varepsilon)\mathcal{R}(x,\varepsilon,d)$

•
$$\mathcal{R}(x,\varepsilon,d) = \mathbb{E}\left[(1-S)^{d/2} \mathbb{I}_{\{S \leq 1\}} \right]$$
 and $S = \frac{1}{\varepsilon^2} \sum_{j \geq d+1} \left(\theta_j - \langle x, \xi_j \rangle \right)^2$

• $V_d(\varepsilon)$ = volume of the *d*-dimensional ball of radius ε .

Some settings lead to define an intensity $\Psi(x)$ of the SmBP:

Funct. Setting

SmBP Appro

Clustering 00000 000000 Discriminant 000000 00

SmBP Asymptotic: let $d(\varepsilon) \rightarrow \infty$

• Consider:

- $\{\lambda_j, \xi_j\}_{j=1}^{\infty}$ eigenelements of $\Sigma[\cdot]$
- (Karhunen-Loève) $X(t) = \sum_{j=1}^{\infty} \theta_j \xi_j(t), \quad t \in [0, 1]$
- $\theta_j = \langle X, \xi_j \rangle$ principal components (PCs) of X satisfying $\mathbb{E}[\theta_j] = 0, \quad Var(\theta_j) = \lambda_j, \quad \mathbb{E}[\theta_j \theta_{j'}] = 0, \quad j \neq j'$

Funct. Setting

SmBP Appro

Clustering 00000 000000 Discriminant 000000 00

SmBP Asymptotic: let $d(\varepsilon) \rightarrow \infty$

- Consider:
 - $\{\lambda_j, \xi_j\}_{j=1}^{\infty}$ eigenelements of $\Sigma[\cdot]$
 - (Karhunen-Loève) $X(t) = \sum_{j=1}^{\infty} \theta_j \xi_j(t), \quad t \in [0,1]$
 - $\theta_j = \langle X, \xi_j \rangle$ principal components (PCs) of X satisfying $\mathbb{E}[\theta_j] = 0, \quad Var(\theta_j) = \lambda_j, \quad \mathbb{E}[\theta_j \theta_{j'}] = 0, \quad j \neq j'$
- Assume:
 - $\boldsymbol{\theta} = (\theta_1, \dots, \theta_d)'$ admits a smooth pdf f_d
 - $\sup_{j\geq 1}(x_j^2/\lambda_j) < \infty$, with $x_j = \langle x, \xi_j \rangle$
 - {λ_j}_{j=1}[∞] decays to zero exponentially or faster (the spectrum of Σ is rather concentrate)

SmBP Approx 00 00000 Clustering 00000 000000 Discriminant 000000 00

SmBP Asymptotic: let $d(\varepsilon) \rightarrow \infty$

- Consider:
 - $\{\lambda_j, \xi_j\}_{j=1}^{\infty}$ eigenelements of $\Sigma[\cdot]$
 - (Karhunen-Loève) $X(t) = \sum_{j=1}^{\infty} \theta_j \xi_j(t), \quad t \in [0,1]$
 - $\theta_j = \langle X, \xi_j \rangle$ principal components (PCs) of X satisfying $\mathbb{E}[\theta_j] = 0, \quad Var(\theta_j) = \lambda_j, \quad \mathbb{E}[\theta_j \theta_{j'}] = 0, \quad j \neq j'$
- Assume:
 - $\boldsymbol{\theta} = (\theta_1, \dots, \theta_d)'$ admits a smooth pdf f_d
 - $\sup_{j\geq 1}(x_j^2/\lambda_j) < \infty$, with $x_j = \langle x, \xi_j \rangle$
 - {λ_j}_{j=1}[∞] decays to zero exponentially or faster (the spectrum of Σ is rather concentrate)

Proposition [B., Goia'16b]

As $\varepsilon \to 0$, it is possible to choose $d = d(\varepsilon) \to \infty$ so that: $\varphi(x, \varepsilon) \sim f_d(x_1, \dots, x_d) \phi(d, \varepsilon)$

This generalizes [Delaigle, Hall'10] where PCs are independent

Funct. Setting

SmBP Appro

Clustering 00000 000000 Discriminant 000000 00

SmBP Asymptotic: let $d(\varepsilon) \rightarrow \infty$

Proof Sketch. STEP 1. Fix $d \in \mathbb{N}$. Taylor leads to $\left| \frac{\varphi(x,\varepsilon)}{f_d V_d \mathcal{R}} - 1 \right| \leq \frac{C\varepsilon^2}{\lambda_d}$

Funct. Setting

SmBP Appro

Clustering 00000 000000 Discriminant 000000 00

SmBP Asymptotic: let $d(\varepsilon) \rightarrow \infty$

Proof Sketch. STEP 1. Fix $d \in \mathbb{N}$. Taylor leads to $\left| \frac{\varphi(x,\varepsilon)}{f_d V_d \mathcal{R}} - 1 \right| \leq \frac{C\varepsilon^2}{\lambda_d}$ STEP 2. Use the $\{\lambda_j\}$ decay to choose $d = d(\varepsilon)$ so that $d \to \infty$, $1 - C \frac{d+2}{\varepsilon^2} \sum_{j \geq d+1} \lambda_j \leq \mathcal{R} \leq 1$ That is $\mathcal{R}(x,\varepsilon, d(\varepsilon)) \to 1$ as $\varepsilon \to 0$.

Funct. Setting

SmBP Appro

Clustering 00000 000000 Discriminant 000000 00

SmBP Asymptotic: let $d(\varepsilon) \rightarrow \infty$

Proof Sketch. **STEP 1.** Fix $d \in \mathbb{N}$. Taylor leads to $\left|\frac{\varphi(x,\varepsilon)}{f_d V_d \mathcal{R}} - 1\right| \leq \frac{C\varepsilon^2}{\lambda_d}$ **STEP 2.** Use the $\{\lambda_j\}$ decay to choose $d = d(\varepsilon)$ so that $d o \infty, \qquad 1 - C rac{d+2}{arepsilon^2} \sum_{j \in \mathcal{R}} \lambda_j \leq \mathcal{R} \leq 1$ $i \ge d+1$ That is $\mathcal{R}(x,\varepsilon,d(\varepsilon)) \to 1$ as $\varepsilon \to 0$. **STEP 3.** Errors in 1-2 are controlled at the same time exploiting $\{\lambda_i\}$ decay (the faster they decay, the smaller the total error is) \Rightarrow The basis provided by KL decomposition is OPTIMAL

Funct. Setting

SmBP Approx

Clustering 00000 000000 Discriminant 000000 00

SmBP Asymptotic: comment 1/3

$$arphi(x,arepsilon)\sim f_d(x)\phi(d,arepsilon)$$
 as $arepsilon o 0$ and $d(arepsilon) o\infty$

In general, f_d still depends on ε through $d(\varepsilon)$ \implies it is not an intensity of the SmBP BUT, some settings lead to an intensity $\Psi(x)$ of the SmBP:

• If $\{\theta_j\}$ are independent with density $\propto \exp\left\{-\left(|x_j|/\sqrt{\lambda_j}\right)^p\right\}$. Then

$$f_d(x) o \Psi(x) = \exp\left\{-rac{1}{2}\sum_{j=1}^{\infty} \left(|x_j|/\sqrt{\lambda_j}
ight)^p
ight\}, ext{ for any } x \in H$$

is an intensity for the SmBP (Gaussian processes are included in this family).

Funct. Setting

SmBP Approx

Clustering 00000 000000 Discriminant 000000 00

SmBP Asymptotic: comment 2/3

$$arphi(x,arepsilon)\sim f_d(x)\phi(d,arepsilon)$$
 as $arepsilon o 0$ and $d(arepsilon) o\infty$

The form of the volumetric term $\phi(d, \varepsilon)$ depends on the eigenvalues decay rate. As example:

• Exponential decay (e.g. $\lambda_j = e^{-\beta j^{\alpha}}, \ \beta > 0, \alpha \ge 1$):

$$\lambda_d^{-1} \sum_{j \ge d+1} \lambda_j < C, \quad \forall d$$

 $\phi(d,\varepsilon) = \exp\left\{\frac{1}{2}d\left[\log(2\pi e\varepsilon^2) - \log(d) + \delta(d,\alpha)\right]\right\}$ • Hyper-exponential decay (e.g. $\lambda_j = e^{-\beta j^{\alpha}}, \ \beta > 0, \alpha > 1$):

$$d\lambda_d^{-1}\sum_{j\geq d+1}\lambda_j=o\left(1
ight), ext{ as } d
ightarrow\infty$$

 $\phi(d,\varepsilon) = rac{\varepsilon^d \pi^{d/2}}{\Gamma(d/2+1)}$ (Volume of a *d*-dim ball)

Funct. Setting

SmBP Approx

Clustering 00000 000000 Discriminant 000000 00

SmBP Asymptotic: comment 3/3

$$\varphi(x,\varepsilon) \sim f_d(x)\phi(d,\varepsilon)$$
 as $\varepsilon \to 0$ and $d(\varepsilon) \to \infty$

There are situations in which $\varphi \sim f_d(x)\phi(d,\varepsilon)$ for slower (than exponential) decays. E.g. Wiener process:

$$\lambda_j \sim j^{-2}, \qquad \varphi(x,\varepsilon) \sim \exp\left\{-1/2\int_0^1 x'(t)dt\right\}\phi(\varepsilon)$$

Funct. Setting

SmBP Appro

Clustering 00000 000000 Discriminant 000000 00

SmBP Mixture

• Consider the conditioned SmBP

$$\varphi(x, \varepsilon | g) = \mathbb{P}(||X - x|| < \varepsilon | Y = g) \qquad g = 1, \dots, G,$$

Mixture

$$\varphi(x,\varepsilon) = \sum_{g=1}^{G} \pi_{g} \varphi(x,\varepsilon|g)$$

Funct. Setting

SmBP Appro 00 00000 Clustering 00000 000000 Discriminant 000000 00

SmBP Mixture

• Consider the conditioned SmBP

$$arphi\left(x,arepsilon|g
ight)=\mathbb{P}\left(\|X-x\|$$

• Mixture + Factorization

$$\varphi(x,\varepsilon) = \sum_{g=1}^{G} \pi_{g} \varphi(x,\varepsilon|g) \sim f_{d}(x_{1},\ldots,x_{d}) \phi(d,\varepsilon), \quad \varepsilon \to 0$$

Funct. Setting

SmBP Appro

Clustering 00000 000000 Discriminant 000000 00

SmBP Mixture

• Consider the conditioned SmBP

$$arphi\left(x,arepsilon|g
ight)=\mathbb{P}\left(\|X-x\|$$

• Mixture + Factorization

$$\varphi(x,\varepsilon) = \sum_{g=1}^{G} \pi_{g} \varphi(x,\varepsilon|g) \sim f_{d}(x_{1},\ldots,x_{d}) \phi(d,\varepsilon), \quad \varepsilon \to 0$$

Surrogate density f_d :

- carries spatial information on the mixture
- endorses "density oriented" clustering approach on f_d

Funct. Setting

SmBP Appro 00 00000 Clustering 00000 000000 Discriminant 000000 00

SmBP Mixture

• Consider the conditioned SmBP

$$arphi\left(x,arepsilon|g
ight)=\mathbb{P}\left(\|X-x\|$$

• Mixture + Factorization

$$\varphi(\mathbf{x},\varepsilon) = \sum_{g=1}^{G} \pi_{g} \varphi(\mathbf{x},\varepsilon|g) \sim f_{d}(\mathbf{x}_{1},\ldots,\mathbf{x}_{d}) \phi(d,\varepsilon), \quad \varepsilon \to 0$$

$$\sim \sum_{g=1}^{G} \pi_g f_{d_g}(x_1, \ldots, x_{d_g}|g) \phi(d_g, \varepsilon)$$

Funct. Setting

SmBP Appro

Clustering 00000 000000 Discriminant 000000 00

SmBP Mixture

• Consider the conditioned SmBP

$$arphi\left(x,arepsilon|g
ight)=\mathbb{P}\left(\|X-x\|$$

• Mixture + Factorization

$$\varphi(\mathbf{x},\varepsilon) = \sum_{g=1}^{G} \pi_{g} \varphi(\mathbf{x},\varepsilon|g) \sim f_{d}(\mathbf{x}_{1},\ldots,\mathbf{x}_{d}) \phi(d,\varepsilon), \quad \varepsilon \to 0$$
$$\sim \sum_{g=1}^{G} \pi_{g} f_{d_{g}}(\mathbf{x}_{1},\ldots,\mathbf{x}_{d_{g}}|g) \phi(d_{g},\varepsilon)$$

Under suitable assumptions on Σ , as $\varepsilon \to 0$: $f_d(x_1, \dots, x_d) \sim \sum_{g=1}^G \pi_g f_d(x_1, \dots, x_d | g), \quad \varepsilon \to 0$ \implies discriminant analysis using $\pi_g f_d(x | g)$.

Funct. Setting 0000000 00000000 SmBP Approx

Clustering 00000 000000 Discriminant 000000 00

OUTLINE

Density oriented classification methods: a review

2 Functional Setting

Estimating the surrogate Density
 Theoretical Aspects
 Empirical Performances

4 SmBP Clustering

5 SmBP Discriminant Analysis

SmBP Approx

Clustering 00000 000000 Discriminant 000000 00

Estimating the surrogate Density

Multivariate kernel density estimator:

$$\widehat{f}_{d,n}\left(\widehat{\Pi}_{d}x\right) = \frac{1}{n}\sum_{i=1}^{n} K_{H}\left(\left\|\widehat{\Pi}_{d}\left(X_{i}-x\right)\right\|\right), \qquad \widehat{\Pi}_{d}x \in \mathbb{R}^{d},$$

where:

- $K_H(\mathbf{u}) = \det(H)^{-1/2} K(H^{-1/2}\mathbf{u})$,
- K kernel function,
- *H* symmetric semi-definite positive $d \times d$ matrix,
- $\widehat{\Pi}_d$ projection operator over the subspace spanned by the first d eigenfunctions of $\widehat{\Sigma}_n$

SmBP Approx

Clustering 00000 000000 Discriminant 000000 00

Estimating the surrogate Density

Multivariate kernel density estimator:

$$\widehat{f}_{d,n}\left(\widehat{\Pi}_{d}x\right) = \frac{1}{n}\sum_{i=1}^{n} K_{H}\left(\left\|\widehat{\Pi}_{d}\left(X_{i}-x\right)\right\|\right), \qquad \widehat{\Pi}_{d}x \in \mathbb{R}^{d},$$

where:

- $K_H(\mathbf{u}) = \det(H)^{-1/2} K(H^{-1/2}\mathbf{u})$,
- K kernel function,
- *H* symmetric semi-definite positive $d \times d$ matrix,
- $\widehat{\Pi}_d$ projection operator over the subspace spanned by the first d eigenfunctions of $\widehat{\Sigma}_n$

 Π_d is <u>estimated</u>:

; is the rate of convergence the same as when Π_d is known?

SmBP Approx

Clustering 00000 000000 Discriminant 000000 00

Estimating the surrogate Density

Consider $H_n = h_n^2 I$ and suppose: (B.1) $f_d(x) > 0$ and p times differentiable; (B.2) $h_n \to 0$ and $nh_n^d / \log n \to \infty$ as $n \to \infty$; (B.3) K is a density, Lipschitz and bounded with cpct. support; (B.4) $\exists s, \kappa > 0$: $\mathbb{E}[||X - x||^m] \le m! s \kappa^{m-2}/2$.

SmBP Approx

Clustering 00000 000000 Discriminant 000000 00

Estimating the surrogate Density

Consider $H_n = h_n^2 I$ and suppose: (B.1) $f_d(x) > 0$ and p times differentiable; (B.2) $h_n \to 0$ and $nh_n^d / \log n \to \infty$ as $n \to \infty$; (B.3) K is a density, Lipschitz and bounded with cpct. support; (B.4) $\exists s, \kappa > 0$: $\mathbb{E}[||X - x||^m] \le m! s \kappa^{m-2}/2$.

[B.,Goia'16b]

Assume (B.1)–(B.4) with p > (3d + 2)/2 and consider the optimal bandwidth

$$c_{1}n^{-\frac{1}{2p+d}} \leq h_{n} \leq c_{2}n^{-\frac{1}{2p+d}} \qquad c_{1}, c_{2} > 0.$$

Then, as $n \to \infty$ and uniformly in \mathbb{R}^{d}
 $\mathbb{E}\left[f_{d}\left(x\right) - \widehat{f}_{n}\left(x\right)\right]^{2} = O\left(n^{-2p/(2p+d)}\right).$

Funct. Setting 0000000 00000000 SmBP Approx

Clustering 00000 000000 Discriminant 000000 00

Finite dimensional process

$$X(t) = a\sqrt{2/\pi} \sin(t)$$
 (the random process)
 $a \sim \begin{cases} pdf f_a \\ \mathbb{E}[a] = 0, Var(a) = 1, \end{cases}$ (the only random part)
 $t \in [0, \pi]$

Funct. Setting 0000000 00000000 SmBP Approx

Clustering 00000 000000 Discriminant 000000 00

Finite dimensional process

$$\begin{array}{l} X\left(t\right) = a\sqrt{2/\pi}\sin\left(t\right) \text{ (the random process)} \\ a \sim \left\{ \begin{array}{l} \text{pdf } f_a \\ \mathbb{E}[a] = 0, \ Var(a) = 1, \end{array} \right\} \text{ (the only random part)} \\ t \in [0, \pi] \\ x\left(t\right) = b\sqrt{2/\pi}\sin\left(t\right) \text{ (center of the ball)} \\ b \text{ fixed value in } \mathbb{R} \end{array}$$

Funct. Setting

SmBP Approx

Clustering 00000 000000 Discriminant 000000 00

Finite dimensional process

$$\begin{array}{l} X\left(t\right) = a\sqrt{2/\pi}\sin\left(t\right) \mbox{ (the random process)} \\ a \sim \left\{ \begin{array}{l} pdf \ f_a \\ \mathbb{E}[a] = 0, \ Var(a) = 1, \end{array} \right\} \mbox{ (the only random part)} \\ t \in [0, \pi] \\ x\left(t\right) = b\sqrt{2/\pi}\sin\left(t\right) \mbox{ (center of the ball)} \\ b \ fixed \ value \ in \ \mathbb{R} \end{array}$$

In this setting, it holds:

 $\varphi(x,\varepsilon) \sim f_1(x_1) \varepsilon \pi^{1/2} / \Gamma(1/2+1) = 2f_a(b) \varepsilon.$

- (X_1, \ldots, X_n) sample drawn from X
- we compare f_a with the 1-dim estimator $\widehat{f_1}$

Funct. Setting 0000000 00000000 SmBP Approx

Clustering 00000 000000 Discriminant 000000 00

Finite dimensional process

• Relative MSE: $\sum_{b} \left[\widehat{f}_{1}\left(\widehat{x}_{1}^{b} \right) - f_{a}\left(b \right) \right]^{2} / \sum_{b} f_{a}^{2}\left(b \right)$

Funct. Setting 0000000 00000000 SmBP Approx

Clustering 00000 000000 Discriminant 000000 00

Finite dimensional process

- Relative MSE: $\sum_{b} \left[\widehat{f}_{1}\left(\widehat{x}_{1}^{b} \right) f_{a}\left(b \right) \right]^{2} / \sum_{b} f_{a}^{2}\left(b \right)$
- 1000 Monte Carlo replications varying the sample size *n* and the distribution

Funct. Setting 0000000 00000000 SmBP Approx

Clustering 00000 000000 Discriminant 000000 00

Finite dimensional process

- Relative MSE: $\sum_{b} \left[\widehat{f}_{1}\left(\widehat{x}_{1}^{b} \right) f_{a}\left(b \right) \right]^{2} / \sum_{b} f_{a}^{2}\left(b \right)$
- 1000 Monte Carlo replications varying the sample size *n* and the distribution

Funct. Setting 0000000 00000000 SmBP Approx

Clustering 00000 000000 Discriminant 000000 00

Finite dimensional process

- Relative MSE: $\sum_{b} \left[\widehat{f}_{1}\left(\widehat{x}_{1}^{b} \right) f_{a}\left(b \right) \right]^{2} / \sum_{b} f_{a}^{2}\left(b \right)$
- 1000 Monte Carlo replications varying the sample size *n* and the distribution

	$a \sim N(0,1)$		$a \sim t(5) / \sqrt{5/3}$		$a \sim (\chi^2(8) - 8) / 4$	
	$b \in [-4, 4]$		$b \in [-4, 4]$		$b \in [-2, 6]$	
n	Mean	Std.	Mean	Std.	Mean	Std.
50	3.235	(2.681)	5.921	(2.557)	4.081	(2.842)
100	1.860	(1.444)	4.775	(1.503)	2.401	(1.619)
200	1.091	(0.824)	4.138	(0.878)	1.422	(0.887)
500	0.546	(0.355)	3.737	(0.477)	0.753	(0.443)
1000	0.330	(0.220)	3.606	(0.327)	0.453	(0.233)

• RMSE $(\times 10^2)$ decreases as the sample size increases:

- better estimates of projections $\widehat{\theta}$ and \widehat{x}^b
- better performances of the kernel estimator
- Shape of distributions matters: long tails and asymmetries worse estimates

Funct. Setting 0000000 00000000 SmBP Approx

Clustering 00000 000000 Discriminant 000000 00

Finite dimensional process

• 1000 Monte Carlo replications varying *b* with fixed sample size n = 200

Funct. Setting 0000000 00000000 SmBP Approx

Clustering 00000 000000 Discriminant 000000 00

Finite dimensional process

- 1000 Monte Carlo replications varying *b* with fixed sample size n = 200
- Absolute percentage errors (APE) = $\left| \widehat{f_1} \left(\widehat{x}_1^b \right) f_a(b) \right| / f_a(b)$

Funct. Setting 0000000 00000000 SmBP Approx

Clustering 00000 000000 Discriminant 000000 00

Finite dimensional process

- 1000 Monte Carlo replications varying *b* with fixed sample size n = 200
- Absolute percentage errors (APE) = $\left| \widehat{f_1} \left(\widehat{x}_1^b \right) f_a(b) \right| / f_a(b)$

Funct. Setting 0000000 00000000 SmBP Approx

Clustering 00000 000000 Discriminant 000000 00

Finite dimensional process

- 1000 Monte Carlo replications varying *b* with fixed sample size n = 200
- Absolute percentage errors (APE) = $\left| \widehat{f_1} \left(\widehat{x}_1^b \right) f_a(b) \right| / f_a(b)$

Estimate worsens at the edges due to limitations of kernel density estimator in evaluate the tails.

Funct. Setting

SmBP Approx

Clustering 00000 000000 Discriminant 000000 00

Infinite dimensional process

• X Stand. Brownian Motion on [0,1] $(\lambda_j \sim \cos t \cdot j^{-2})$. • $x(t) = b \frac{2\sqrt{2}}{\pi} \sin\left(\frac{\pi t}{2}\right), \quad t \in [0,1], b \in \mathbb{R}$ $\varphi(x,\varepsilon) \sim \exp\left\{-b^2/2\right\} \varphi(0,\varepsilon), \quad \text{as } \varepsilon \to 0,$

Funct. Setting

SmBP Approx

Clustering 00000 000000 Discriminant 000000 00

Infinite dimensional process

- X Stand. Brownian Motion on [0,1] $(\lambda_j \sim cost \cdot j^{-2})$. • $x(t) = b \frac{2\sqrt{2}}{\pi} \sin\left(\frac{\pi t}{2}\right), \quad t \in [0,1], b \in \mathbb{R}$ $\varphi(x,\varepsilon) \sim \exp\left\{-b^2/2\right\} \varphi(0,\varepsilon), \quad \text{as } \varepsilon \to 0,$
- 1000 MC replication of BM sample (X_1, \ldots, X_n)
- the used dimension d varies in $1, \ldots, 5$
- *b* ∈ [−4, 4]
Funct. Setting 0000000 00000000 SmBP Approx

Clustering 00000 000000 Discriminant 000000 00

Infinite dimensional process

n	d = 1	<i>d</i> = 2	<i>d</i> = 3	d = 4	d = 5
50	3.36 (2.51)	7.20 (3.73)	13.53 (7.34)	22.03 (12.05)	31.90 (15.87)
100	1.95 (1.20)	4.82 (2.59)	9.47 (5.54)	15.86 (8.71)	23.99 (12.27)
200	1.16 (0.72)	3.14 (1.60)	6.64 (3.77)	11.51 (6.30)	17.89 (9.48)
500	0.57 (0.33)	1.78 (0.93)	4.17 (2.36)	7.77 (4.23)	12.96 (6.88)
1000	0.35 (0.19)	1.15 (0.63)	2.82 (1.64)	5.86 (3.13)	10.09 (5.43)

• Fix d, RMSE reduces (both in mean and var.) increasing n

- Fix *n*, RMSE increases (both in mean and var.) with *d* (curse of dim.)
- *d* vs. *n*: it is possible to use large *d* at the cost of use large samples (read diagonally the table).

Funct. Setting

SmBP Appro

Clustering

Discriminant 000000 00

OUTLINE

- Density oriented classification methods: a review
- 2 Functional Setting
- 3 Estimating the surrogate Density
- 4 SmBP Clustering
 - SmBP Mixture and Clustering
 - Examples
- 5 SmBP Discriminant Analysis

Funct. Setting

SmBP Appro

Clustering •0000 00000 Discriminant 000000 00

Multivariate Clustering

$$f(x) = \sum_{g=1}^{G} \pi_{g} f(x|g), \qquad x \in \mathbb{R}^{d}$$

IDEA

Regions with high density identify clusters [Wishart'69]:

• Fix c, consider the connected components of $\{f > c\}$

Clusters number depends on the threshold level c In many cases, MODES depict structural differences among data

unct. Setting

SmBP Appro

Clustering

Discriminant 000000 00

SmBP Mixture

• Consider the conditioned SmBP

$$arphi\left(x,arepsilon|g
ight)=\mathbb{P}\left(\|X-x\|$$

• Mixture + Factorization

$$\varphi(x,\varepsilon) = \sum_{g=1}^{G} \pi_{g} \varphi(x,\varepsilon|g) \sim f_{d}(x_{1},\ldots,x_{d}) \phi(d,\varepsilon), \quad \varepsilon \to 0$$

Surrogate density f_d :

- carries spatial information on the mixture
- endorses "density oriented" clustering approach on f_d

Funct. Setting 0000000 00000000 SmBP Appro 00 00000 Clustering

Discriminant 000000 00

SmBP Clustering

Consider the sample $\{(X_1, Y_1), \ldots, (X_n, Y_n)\}$ drawn from (X, Y)

- X_i are observed
- the group variables Y_i are latent.

Funct. Setting 0000000 00000000 SmBP Appro 00 00000 Clustering

Discriminant 000000 00

SmBP Clustering

Consider the sample $\{(X_1, Y_1), \ldots, (X_n, Y_n)\}$ drawn from (X, Y)

- X_i are observed
- the group variables Y_i are latent.

GOAL

To determine

- the range of Y (i.e. G)
- for each X_i , the membership group (that is the value of Y_i)

Funct. Setting 0000000 00000000 SmBP Appro 00 00000 Clustering

Discriminant 000000 00

SmBP Clustering

Consider the sample $\{(X_1, Y_1), \ldots, (X_n, Y_n)\}$ drawn from (X, Y)

- X_i are observed
- the group variables Y_i are latent.

GOAL

To determine

- the range of Y (i.e. G)
- for each X_i , the membership group (that is the value of Y_i)

METHOD

Regions with "locally high surrogate density (f_d) " identify groups

Funct. Setting 0000000 00000000 SmBP Appro

Clustering

Discriminant 000000 00

Algorithm

Estimate covariance operator and eigenelements;

unct. Setting

SmBP Appro 00 00000 Clustering

Discriminant 000000 00

Algorithm

Estimate covariance operator and eigenelements;

Fix d, compute f_{d,n}, and look for its local maxima m_{d,g}
 (g = 1,..., G);

unct. Setting

SmBP Appro

Clustering

Discriminant 000000 00

Algorithm

- Estimate covariance operator and eigenelements;
- Fix d, compute f_{d,n}, and look for its local maxima m_{d,g}
 (g = 1,..., G);
- Similar Finding Prototypes: for each g in $\{1, \ldots, \widehat{G}\}$, the g-th "prototypes" group is formed by those X_i whose estimated PCs belong to the largest connected iso-surface of $\widehat{f}_{d,n}$ that contains only the maximum $m_{d,g}$.

Funct. Setting

SmBP Appro

Clustering

Discriminant 000000 00

Algorithm

- Estimate covariance operator and eigenelements;
- Fix d, compute f_{d,n}, and look for its local maxima m_{d,g} (g = 1,..., G);
- Finding Prototypes: for each g in {1,..., G}, the g-th "prototypes" group is formed by those X_i whose estimated PCs belong to the largest connected iso-surface of f_{d,n} that contains only the maximum m_{d,g}.
- Label the unclassified X_i with the \widehat{K} prototypes groups by means of a k-NN procedure.

unct. Setting

SmBP Appro 00 00000 Clustering

Discriminant 000000 00

Comments

 Proposed method ⇔ local adaptive threshold Hartigan ⇔ global threshold ([Cuevas,Febreo,Fraiman'00, Cuevas,Febrero,Fraiman'01] multivariate)

Funct. Setting

SmBP Appro 00 00000 Clustering

Discriminant 000000 00

- Proposed method ↔ local adaptive threshold Hartigan ↔ global threshold ([Cuevas,Febreo,Fraiman'00, Cuevas,Febrero,Fraiman'01] multivariate)
- Distribution-Free: no distributional assumptions on f_d ([Jacques,Preda'13, Jacques,Preda'14]: gaussian finite mixture)

unct. Setting

SmBP Appro 00 00000 Clustering

Discriminant 000000 00

- Proposed method ⇔ local adaptive threshold Hartigan ⇔ global threshold ([Cuevas,Febreo,Fraiman'00, Cuevas,Febrero,Fraiman'01] multivariate)
- Distribution-Free: no distributional assumptions on f_d ([Jacques,Preda'13, Jacques,Preda'14]: gaussian finite mixture)
- Dependent Approach: PCs are just uncorrelated ([Jacques,Preda'13, Jacques,Preda'14]: PCs independent)

unct. Setting

SmBP Appro 00 00000 Clustering

Discriminant 000000 00

- Proposed method ⇔ local adaptive threshold Hartigan ⇔ global threshold ([Cuevas,Febreo,Fraiman'00, Cuevas,Febrero,Fraiman'01] multivariate)
- Distribution-Free: no distributional assumptions on f_d ([Jacques,Preda'13, Jacques,Preda'14]: gaussian finite mixture)
- Dependent Approach: PCs are just uncorrelated ([Jacques,Preda'13, Jacques,Preda'14]: PCs independent)
- Tuning d (or ε) and/or tuning the bandwidth matrix lead to different phenomenon scales

Funct. Setting 0000000 00000000 SmBP Appro

Clustering •••••• Discriminant 000000 00

Example: Synthetic Data

$$X_i^{(g)}(t) = \sum_{l=0}^L \sqrt{\lambda_l} au_{i,l}^{(g)} arphi_l(t),$$

 $t \in [0,1], i = 1, \dots, N, g = 1, \dots, G.$

- $\{\varphi_I(t)\}_I$ Fourier Basis
- $\lambda_l = 0.7 \times 3^{-l}$ (l = 1, ..., L = 150), so that the first 3 PCs explain always more than 99%
- G = 2 groups and N = 300 curves for each group
- uncorrelated but dependent coefficients $(\tau_{i,l}^{(g)})_{l=1}^{L}$ so that the first 3 PCs looks like two bound up "bananas".

SmBP Appro 00 00000 Clustering 00000 000000 Discriminant 000000 00

Example: Synthetic Data

Funct. Setting

SmBP Appro

Clustering

Discriminant 000000 00

Example: Synthetic Data

Funct. Setting 0000000 00000000

SmBP Appro 00 00000 Clustering

Discriminant 000000 00

Example: Synthetic Data

d = 3 (FEV criterion)400 Monte Carlo replications

Algorithm	Miscl. Error		Ĝ		
	Mean	St. Dev.	q 0.5	q 0.75	q 0.9
SmBP	0.088	0.174	2	2	2
Functional K-means ($G = 2$)	0.377	0.068	_	_	_
Gaussian Mixture ($G = 2$)	0.153	0.106	_	—	—
GM BIC selection	0.666	0.034	9	10	11

Funct. Setting 0000000 00000000 SmBP Appro

Clustering

Discriminant 000000 00

Example: Growth Curves

d = 3 (FEV) - 97.9% correct classification with respect sex

Funct. Setting

SmBP Appro

Clustering

Discriminant 000000 00

Example: Neuronal data

Funct. Setting

SmBP Appro

Clustering 00000 000000 Discriminant

OUTLINE

- 1 Density oriented classification methods: a review
- 2 Functional Setting
- 3 Estimating the surrogate Density
- 4 SmBP Clustering
- 5 SmBP Discriminant Analysis
 - SmBP Mixture and Discriminant
 - Discriminant Examples

Funct. Setting 0000000 00000000 SmBP Approx 00 00000 Clustering 00000 000000 Discriminant •00000 00

Multivariate Discriminant Analysis

$$f(x) = \sum_{g=1}^{G} \pi_{g} f(x|g), \qquad x \in \mathbb{R}^{d}$$

GOAL

To label a new incoming observation x

• Bayes Classification Rule: assign x to the class $\gamma(x) \in \{1, ..., G\}$ with the highest posterior probability

$$\gamma(x) = \underset{g=1,...,G}{\operatorname{arg max}} \mathbb{P}(Y = g | X = x)$$

• If f(x|g) were known (f(x|g) > 0):

$$\gamma(x) = \underset{g=1,\dots,G}{\arg \max} \pi_g f(x|g).$$

Funct. Setting 0000000 00000000 SmBP Approx

Clustering 00000 000000 Discriminant 000000 00

Generalized Bayes Classification Rule

- X and Y are observed
- Consider the mixture of SmBP

$$\varphi(x,\varepsilon) = \sum_{g=1}^{G} \pi_{g} \varphi(x,\varepsilon|g), \qquad \varepsilon > 0.$$

Funct. Setting 0000000 00000000 SmBP Approx

Clustering 00000 000000 Discriminant 000000

Generalized Bayes Classification Rule

- X and Y are observed
- Consider the mixture of SmBP

$$arphi\left(x,arepsilon
ight)=\sum_{g=1}^{G}\pi_{g}arphi\left(x,arepsilonert g
ight),\qquadarepsilon>0.$$

Generalized Classification Rule: assign a new functional observation x to g-th group for which, as ε tends to 0,

$$\frac{\mathbb{P}(Y=g| \ \|X-x\|<\varepsilon)}{\mathbb{P}(Y=g'| \ \|X-x\|<\varepsilon)} > 1, \quad \text{ for any } g \in \{1,\ldots,G\}\,, \ g' \neq g.$$

Funct. Setting 0000000 00000000 SmBP Approx 00 00000 Clustering 00000 000000 Discriminant 000000

Generalized Bayes Classification Rule

- X and Y are observed
- Consider the mixture of SmBP

$$arphi\left(x,arepsilon
ight)=\sum_{g=1}^{G}\pi_{g}arphi\left(x,arepsilonert g
ight),\qquadarepsilon>0.$$

Generalized Classification Rule: assign a new functional observation x to g-th group for which, as ε tends to 0,

$$\frac{\mathbb{P}(Y=g| \ \|X-x\|<\varepsilon)}{\mathbb{P}(Y=g'| \ \|X-x\|<\varepsilon)} > 1, \quad \text{ for any } g \in \{1,\ldots,G\}\,, \ g' \neq g.$$

[B.,Goia'16a]

The Generalized Classification Rule is equivalent to

$$\gamma(x,d) = rgmax_g max_g f_d(x|g)$$
 as $d o \infty$

Funct. Setting

SmBP Appro

Clustering 00000 000000 Discriminant 000000 00

Proof Sketch

• Bayes:
$$\mathbb{P}(Y = g \mid ||X - x|| < \varepsilon) = \frac{\pi_g \varphi(x, \varepsilon|g)}{\varphi(x, \varepsilon)}$$

Funct. Setting

SmBP Appro

Clustering 00000 000000 Discriminant 000000 00

Proof Sketch

• Bayes:
$$\mathbb{P}(Y = g \mid ||X - x|| < \varepsilon) = \frac{\pi_g \varphi(x, \varepsilon|g)}{\varphi(x, \varepsilon)}$$

• Factorization for each group: as $\varepsilon \to 0$

$$\frac{\mathbb{P}(Y = g \mid ||X - x|| < \varepsilon)}{\mathbb{P}(Y = g' \mid ||X - x|| < \varepsilon)} \sim \frac{\pi_g f_{d_g}(x|g) \phi(d_g, \varepsilon)}{\pi_{g'} f_{d_{g'}}(x|g') \phi(d_{g'}, \varepsilon)}$$

unct. Setting

SmBP Appro

Clustering 00000 000000 Discriminant 000000 00

Proof Sketch

• Bayes:
$$\mathbb{P}(Y = g \mid ||X - x|| < \varepsilon) = \frac{\pi_g \varphi(x, \varepsilon|g)}{\varphi(x, \varepsilon)}$$

• Factorization for each group: as $\varepsilon \to 0$

$$\frac{\mathbb{P}(Y = g \mid ||X - x|| < \varepsilon)}{\mathbb{P}(Y = g' \mid ||X - x|| < \varepsilon)} \sim \frac{\pi_g f_{d_g}(x|g) \phi(d_g, \varepsilon)}{\pi_{g'} f_{d_{g'}}(x|g') \phi(d_{g'}, \varepsilon)}$$

• $f_{d_g}(x|g) = \text{joint density of the first } d_g \text{ PCs of } \Sigma_g \text{ (cov. of } g\text{-th group)}$

unct. Setting

SmBP Appro

Clustering 00000 000000 Discriminant 000000 00

Proof Sketch

• Bayes:
$$\mathbb{P}(Y = g \mid ||X - x|| < \varepsilon) = \frac{\pi_g \varphi(x, \varepsilon|g)}{\varphi(x, \varepsilon)}$$

• Factorization for each group: as $\varepsilon \to 0$

$$\frac{\mathbb{P}(Y = g \mid ||X - x|| < \varepsilon)}{\mathbb{P}(Y = g' \mid ||X - x|| < \varepsilon)} \sim \frac{\pi_g f_{d_g}(x|g) \phi(d_g, \varepsilon)}{\pi_{g'} f_{d_{g'}}(x|g') \phi(d_{g'}, \varepsilon)}$$

- $f_{d_g}(x|g) = \text{joint density of the first } d_g \text{ PCs of } \Sigma_g \text{ (cov. of } g\text{-th group)}$
- Spectrum decay of Σ controls the one of Σ_g (min-max principle) ⇒ choose the same d_g = d for any g

unct. Setting

SmBP Appro

Clustering 00000 000000 Discriminant 000000 00

Proof Sketch

• Bayes:
$$\mathbb{P}(Y = g \mid ||X - x|| < \varepsilon) = \frac{\pi_g \varphi(x, \varepsilon|g)}{\varphi(x, \varepsilon)}$$

• Factorization for each group: as $\varepsilon \to 0$

$$\frac{\mathbb{P}(Y = g \mid ||X - x|| < \varepsilon)}{\mathbb{P}(Y = g' \mid ||X - x|| < \varepsilon)} \sim \frac{\pi_g f_{d_g}(x|g) \phi(d_g, \varepsilon)}{\pi_{g'} f_{d_{g'}}(x|g') \phi(d_{g'}, \varepsilon)}$$

- $f_{d_g}(x|g) = \text{joint density of the first } d_g \text{ PCs of } \Sigma_g \text{ (cov. of } g\text{-th group)}$
- Spectrum decay of Σ controls the one of Σ_g (min-max principle) ⇒ choose the same d_g = d for any g
- Simplification leads to Thesis.

Funct. Setting

SmBP Appro

Clustering 00000 000000 Discriminant 000000 00

Estimate the Classifier 1/2

Consider

- $\{(X_1, Y_1), ..., (X_n, Y_n)\}$ sample from (X, Y)
- $d_g = d$ for each $g = 1, \ldots, G$
- $\widehat{\Pi}_{g,d}$ = proj.oper. over the subspace spanned by the first d eigenfunctions of $\widehat{\Sigma}_g$
- A kernel estimator for $\gamma(x, d)$ is:

$$\widehat{\gamma}_{n}(x,d) = \operatorname*{arg\,max}_{g=1,...,G} \frac{1}{n} \sum_{i=1}^{n} \mathbb{I}_{\{Y_{i}=g\}} K_{H_{g}} \left(\left\| \widehat{\Pi}_{g,d} \left(X_{i} - x \right) \right\| \right)$$

SmBP Appro 00 00000

Clustering 00000 000000 Discriminant 000000 00

Estimate the Classifier 2/2

• Consider the Bayes probability of error

 $L^{\star} = \min_{\gamma} \mathbb{P}\left(\gamma\left(X\right) \neq Y\right)$

and the conditional probability of error

 $L_{n} = \mathbb{P}\left(\widehat{\gamma}_{n}\left(X, d\right) \neq Y \mid \left\{\left(X_{1}, Y_{1}\right), \ldots, \left(X_{n}, Y_{n}\right)\right\}\right)$

• Assume that there exists a positive integer d^* such that $\gamma(x, d) = \gamma(x, d^*)$ for any $d \ge d^*$.

[B.,Goia'16a]

Take $H_g = h_g I$.

 $L_n \longrightarrow L^{\star}$ in probability $n \to \infty$

unct. Setting

SmBP Appro

Clustering 00000 000000 Discriminant 000000

Comments

 Proposed method ↔ Bayes Discrimination based on PCs (compare with)
 [James,Hastie'01] ↔ projective approach based on PCs Gaussian Mixture

unct. Setting

SmBP Appro

Clustering 00000 000000 Discriminant 000000

- Proposed method ↔ Bayes Discrimination based on PCs (compare with)
 [James,Hastie'01] ↔ projective approach based on PCs Gaussian Mixture
- Distribution-Free: no distributional assumptions on f_d

Funct. Setting 0000000 00000000 SmBP Appro

Clustering 00000 000000 Discriminant 000000

- Proposed method ↔ Bayes Discrimination based on PCs (compare with)
 [James,Hastie'01] ↔ projective approach based on PCs Gaussian Mixture
- Distribution-Free: no distributional assumptions on f_d
- Model-based approach theoretically justified (not only pure projective)
Funct. Setting

SmBP Appro

Clustering 00000 000000 Discriminant 000000

Comments

- Proposed method ↔ Bayes Discrimination based on PCs (compare with)
 [James,Hastie'01] ↔ projective approach based on PCs Gaussian Mixture
- Distribution-Free: no distributional assumptions on f_d
- Model-based approach theoretically justified (not only pure projective)
- Indeed, if eigenvalues decay of Σ is slow we can not ensure that $d_g = d \implies$ the volume terms ϕ can not be neglected (insufficiency of pure projective approach)

Funct. Setting

SmBP Appro

Clustering 00000 000000 Discriminant 000000

Comments

- Proposed method ↔ Bayes Discrimination based on PCs (compare with)
 [James,Hastie'01] ↔ projective approach based on PCs Gaussian Mixture
- Distribution-Free: no distributional assumptions on f_d
- Model-based approach theoretically justified (not only pure projective)
- Indeed, if eigenvalues decay of Σ is slow we can not ensure that $d_g = d \implies$ the volume terms ϕ can not be neglected (insufficiency of pure projective approach)
- Curse-of-dimensionality affects performances of the methodology

Funct. Setting 0000000 00000000 SmBP Appro 00 00000 Clustering 00000 000000 Discriminant

Example: Synthetic data

- Two Bananas data-set with $\pi_g = 0.5$
- Sample of size n = 300 split in two parts: training-sets $(n_{in} = 200) + \text{test-set} (n_{out} = 100)$
- Out-of-sample misclassification error over 100 MC replications

Funct. Setting 0000000 00000000 SmBP Appro

Clustering 00000 000000 Discriminant

Example: Growth curves

Out-of-sample misclassification errors over 100 MC replications (training-set is 2/3 of the sample)

• We introduced conditions to obtain a factorization of the SmBP

 $\mathsf{SmBP} \sim \mathsf{Intensity} \ \times \ \mathsf{Volume}$

- \bullet We introduced conditions to obtain a factorization of the SmBP SmBP \sim Intensity $\,\times\,$ Volume
- We use the intensity term as surrogate density in classification motivating theoretically the use of PCs

• We introduced conditions to obtain a factorization of the SmBP

 $\mathsf{SmBP}\sim\mathsf{Intensity}~ imes~\mathsf{Volume}$

- We use the intensity term as surrogate density in classification motivating theoretically the use of PCs
- Unsupervised classification: High-Intensity Region Principle

• We introduced conditions to obtain a factorization of the SmBP

 $\mathsf{SmBP} \sim \mathsf{Intensity} \ \times \ \mathsf{Volume}$

- We use the intensity term as surrogate density in classification motivating theoretically the use of PCs
- Unsupervised classification: High-Intensity Region Principle
- Supervised classification: Bayes Rule Generalization

• We introduced conditions to obtain a factorization of the SmBP

 $\mathsf{SmBP} \sim \mathsf{Intensity} \ \times \ \mathsf{Volume}$

- We use the intensity term as surrogate density in classification motivating theoretically the use of PCs
- Unsupervised classification: High-Intensity Region Principle
- Supervised classification: Bayes Rule Generalization
- Performances are studied on simulated and real dataset

Some References

- E.B., A.Goia: Classification methods for Hilbert data based on surrogate density. CSDA, 99, 204-222, (2016)
- E.B.,A.Goia:Some Insights About the Small Ball Probability Factorization for Hilbert Random Elements. Statistica Sinica (Preprint) doi:10.5705/ss.202016.0128

- D.Bosq: Linear Processes in Function Spaces: Theory and Applications. Lectures Notes in Statistics, 149, Springer-Verlag, Berlin (2000)
- A.Cuevas, M.Febrero, R.Fraiman. Estimating the number of clusters. Can.J.Stat., 28(2), 367-382 (2000).
- A.Cuevas, M.Febrero, R.Fraiman. Cluster analysis: a further approach based on density estimation. CSDA, 36, 441–459 (2001).
- M.Ciollaro, C.R.Genovese, D.Wang: Nonparametric Clustering of Functional Data Using Pseudo-Densities (preprint)
- Delaigle,Hall:Defining probability density for a distribution of random functions. AoS 38(2),1171-1193 (2010)
- L.Delsol, C.Louchet (2014) Segmentation of hyperspectral images from functional kernel density estimation. in Contributions in infinite-dimensional statistics and related topics. [Eds Bongiorno et. al], Esculapio
- F.Ferraty,P.Vieu: Nonparametric functional data analysis. Theory and practice. Springer Series Stat.(2006)
- F.Ferraty, A.Goia, P.Vieu: Functional nonparametric model for time series: a fractal approach to dimension reduction. TEST. 11 317–344 (2002)
- F.Ferraty, N.Kudraszow, P.Vieu: Nonparametric estimation of a surrogate density function in infinite-dimensional spaces. J. Nonparametr. Stat. 24 (2), 447–464 (2012).

Some References

- F.Ferraty, A.Mas, P.Vieu: Nonparametric regression on functional data: inference and practical aspects. Aust. N. Z. J. Stat. 49(3), 267–286 (2007)
- T.Gasser, P.Hall, B.Presnell: Nonparametric estimation of the mode of a distribution of random curves. JRSS B 60 (4), 681–691 (1998).

- J.Jacques, C.Preda: Functional data clustering: a survey. ADAC (2014)
- J.Jacques, C.Preda: Model-based clustering for multivariate functional data. CSDA 71, 92–106 (2014)
- G.M. James, T.J. Hastie. Functional linear discriminant analysis for irregularly sampled curves. Journal of the Royal Statistical Society: Series B, 63.3: 533–550 (2001).
- W.V.Li,Q.-M.Shao. Gaussian processes: inequalities, small ball probabilities and applications. In Stochastic processes: theory and methods,V.19 Handbook of Statist., p.533–597. North-Holland, Amsterdam, 2001.
- M.A.Lifshits: Lectures on Gaussian processes. Springer Briefs in Mathematics. Springer, Heidelberg (2012)
- J.O.Ramsay, B.W.Silverman: Functional data analysis, 2nd ed., New York: Springer (2005)
- J.H.Ward Jr.: Hierarchical grouping to optimize an objective function. Journal of the American Statistical Association, 58, 236–244 (1963).
- D.Wishart (1969). Mode Analysis: A Generalization of Nearest Neighbor which Reduces Chaining Effects, in A.J. Cole (Ed.), Numerical Taxonomy, Academic Press, 282–311.

THANKS FOR YOUR ATTENTION