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¢ Basic Idea

Can try to improve the accuracy by using
e.g. Edgeworth expansions;

cf. Feller(1971), Ch. 16.

They are obtained by a Taylor expansion of
the characteristic function of the statistic of
interest around 0O, i.e. at the center of the
distribution, followed by a Fourier inversion.

This leads to expansions of the distribution
in powers of n=1/2 where the leading term
IS the normal density.



¢ Charlier Differential Series (1905)

Distr. H(z) G(z)
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Let us first express H(xz) through G(x) by
means of their characteristic functions:
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Suppose all derivatives of G vanish at the
extremes of the range of . Then, by inte-
gration by parts
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Then, by Fourier inversion:
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D: differential operator which denotes dif-
ferentiation with respect to =x.
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is the Fourier inverse of —¢'(z).
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¢ Edgeworth Expansions

X1,..,Xpiid  E(X;) =0 =x1(X;)
var(X;) =02 = x2(X;)
r=3 xr(X;) =Mo"

Fo(t) = P[T 7, =L s X
n(t) = P[Th < t], n—mzz:l;

Edgeworth uses Charlier differential series

to approx. F,(t) by ®(t) (cumul. normal)
expanding exp{---} and collecting terms ac-

cording to powers of % .
mn
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x(-) = ¥n(:) £(u) = exp{—u?/2}
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By Fourier inversion, we obtain the Edge-
worth expansion for the cumulative distri-
bution:
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For the density:
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H3(t) = — 3t
Hy(t) = t*—6t°2+3
Hg(t) = t° — 15t + 45t — 15

are the Hermite polynomials.



Remarks

o 1#/2 term (\3) corrects for skewness and
n
L term (\4) for kurtosis.

e In particular:
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e If the first K moments exist, then as

n — o0.
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where P.(-) is a polynomial of degree
3(r—2) with coefficients depending only
on Az, -+, Ar.



e [ he Edgeworth approximation is not a
distribution function:
0 —1 range and monotonicity can be vi-
olated in parts of one or both tails.
Numerical instability.

e Fisher-Cornish expansion for quantiles.

e Edgeworth expansion with respect to (e.g.)
2 distribution instead of the normal
— Laguerre polynomials instead of Her-
mite polynomials.
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¢ Applications
Numerical Examples

See Chapter 2 in
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Bootstrapping Studentized Statistics

We want to compare the bootstrap distri-
bution of a statistic § with its studentized
version.



Edgeworth expansions for the
original statistic:
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Edgeworth expansions for the
bootstrap version:
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Comparison:

(-1 = 0p(®() - o))
= Op(c —o)
= 0p(5)

(4) - (@) = Op( =)~ a(t)

= Op(\/—_(a —0)

— Op(ﬁ)

Bootstrapping the studentized statistic cap-
tures the T term of the Edgeworth expan-
sion and provides second order correctness.

Hall(1986, 1988)



¢ Conclusions

e Useful theoretical tool to study the higher-
order properties of estimators and test
statistics.

e By construction Edgeworth expansions
provide in general a good approximation
in the center of the density, but they can
be inaccurate in the tails, where they
can even become negative.

e Absolute error.
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