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¢ Introduction
General Problem

Tail probabilities P[T,, > t] are needed
to carry out statistical inference
(tests and confidence intervals).

Unless T}, has a simple form (e.g. linear)
and/or

the underlying distribution of the observa-

tions has a particular form (e.g. normal),

tail probabilities cannot be computed ex-

actly.

—— rely on asymptotic approximations



Unfortunately the asymptotic (normal)
distribution can be a poor approximation of
tail areas especially for moderate to small
sample sizes or far out in the tails.

This is exactly the region of interest for con-
structing confidence intervals and tests.



Edgeworth Expansions

Can try to improve the accuracy by using
e.g. Edgeworth expansions;

cf. Feller(1971), Ch. 16.

They are obtained by a Taylor expansion of
the characteristic function of the statistic of
interest around 0O, i.e. at the center of the
distribution, followed by a Fourier inversion.

This leads to expansions of the distribution
in powers of n=1/2 where the leading term
IS the normal density.

By construction Edgeworth expansions pro-
vide in general a good approximation in the
center of the density, but they can be in-
accurate in the tails, where they can even
become negative.



Saddlepoint Techniques

Saddlepoint techniques overcome these prob-
lems. They can be traced back to
Riemann(1892): method of steepest descent

Introduced into statistics by
Daniels(1954), Ann. Math. Stat.

T hese approximations exhibit a

relative error of order O(n~1)

to be compared with absolute errors of or-
der O(n—1/2) obtained by using Edgeworth
expansions and similar techniques.

They provide very accurate numerical ap-
proximations for densities and tail areas down
to small sample sizes and /or out in the tails.
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¢ Saddlepoint Techniques

For simplicity we derive the saddlepoint ap-
proximation of the density of the mean of n
iid random variables.

However, it is more useful to derive accurate
approximations in finite samples for robust
statistics rather than for non-robust statis-
tics like the mean

because errors due to deviations from the
underlying model dominate errors due to fi-
nite sample approximations;

cf. Ronchetti & Ventura (2001)

Statistics & Computing

T herefore, later we focus on saddlepoint ap-
proximations for M —estimators.



X1, -+, Xp iid random variables from a dis-
tribution F on sample space X.

M()\) = E[e**]: moment gener. fct.
K(\) =log M(A): cumulant gener. fct.
Density fr(t) of the arithmetic mean (Fourier

inversion):

n
27r

= / M"™(2)e "dz

2711

fa®) = o= [ MO Gre " ar

T4+100
= i/ M"™(2)e "dz

211 Jr—ico

n T4+100
= —/ - exp{n[K(z) — zt]}dz

271 JT—i00
where 7 is the imaginary axis and 7 € R.



Choose 1 = 2z,

the saddlepoint of w(z;t) = K(z) — zt, i.e

gw(zo; t) = K'(z9) —t = 0.
0z

(Can prove zg € R)

Modify the integration path to go through
the path of steepest descent (defined by
Tw(z;t) = 0) from the saddlepoint zq.

This captures most of the mass around the
saddlepoint. The contributions to the inte-
gral outside a neighborhood of the saddle-
point are negligible.



-0.05 0.0 0.05 0.10

-0.10

Paths of steepest ascent (blu ) n descent ((1 9)0)

from the saddlepoint; from Fie Ronchetti

-0715 -0716 -0717 -0718

| | | I |
0.15 0.20 0.25 0.30 0.35

Level curves and path of steepest descent
from the saddlepoint zg = .25 for the sur-
face u(x,y) = Rw(z),

w(z) = —PBlog(l —2) —zt, t=2,a=p=.5
(mean of n iid variables from a Gamma dis-
tribution)







T

£Les

= Jf = AW




T his leads to the saddlepoint approximation
gn(t), Daniels(1954), Ann. Math. Stat.

fn(t) = gn(t){1 + O(n_l)},

where

n

1/2
0 = (5rzencnayy ) “PKO@) = 2O)

and \(t) (saddlepoint) is the solution of

K'(\) —t=0.

The saddlepoint approximation g, (t) of fn(t)
has relative error of order O(n—1):

_ gn(8) = fa(®)
fn ()

rel. err.

= O0(n™ 1)



Alternative way to obtain the saddlepoint
approximation is to use the idea of conju-
gate density, cf. Esscher (1932).

(1) First recenter the underlying density f
at the point ¢ where we want to evaluate
the density of the mean,

i.e. define the conjugate density

fi(x) = C(O)exp{a(t)(z — 1)} f(z),

where C(t) and «(t) are chosen such that
fi(x) is a density (it integrates to 1) and has
expectation t.

ft is the closest distribution to f in the
(backward) Kullback-Leibler distance with
expectation ¢, i.e. it minimizes

drr(g, f) = /9(3?) log [?Ewﬂ

under the conditions

g(x) >0, /g(a:)d:c =1, /xg(a:)da: = t.



(2) Now use locally a normal approximation
to the density of the mean based on the
conjugate density f; rather than f.

This is very accurate because under the con-
jugate density, we are approximating a den-
Ssity at the center at its expected value.

(3) The final step is to relate the density of
the mean computed under the conjugate,
say fnt, to the desired density fp:

fn(t) = C77 () fn,e (1),

This procedure is repeated for each point
t and the conjugate density changes as we
vary t.



It turns out that centering at ¢t the conjugate
density is equivalent to solving the saddle-
point equation and the two approaches vield
the same approximation, where

—log C(t) = K(A(1)) — AL, A(t) = a(i),
and K”(\(t)) = o2(t), the variance of the
conjugate density.



(Very) special case:
F=N(0,1); Xn~N(0,1)

)\2
K\ = ) K'(\@®) =1

NOIE
Clog C(t) = K1) — A(t) -t = —%tQ

C(t) = exp{%tz}

n)1/2 1

gn(t) = (E exp{—antQ}

NN\



Hampel(1973) who coined the expression
small sample asymptotics to indicate the
spirit of these techniques, proposed to re-
center the original distribution combined with
the expansion of the logarithmic derivative

frl In
rather than the density f, itself.

—— normalizing constant, i.e. the constant
that makes the total mass equal to 1, must
be determined numerically.

Advantage, since this rescaling improves fur-
ther the approximation

order of the relative error of the approxima-
tion goes from O(n~1) to O(n=3/2).
Finally, this amounts to drop the constant
(n/27)1/2 provided by the asymptotic nor-
mal distribution in the saddlepoint approx-
iImation and to renormalize the approxima-
tion, i.e.

gn(t) = cnexp{n[K(A(1)) = AOTIHK"(A(B)) 17

= cnC (D)o (),

where ¢, Is the normalizing constant, i.e the
constant that makes the total mass [ gn(t)dt
equal to 1.



Renormalization

Take values in the range
t—p=0(n"12), p=EB[X]]

fu® = 01+ % + 02y},

1= 2D 4 om2)

n

F(O(1 a(p) (¢t —p)a'(p)

gn(t)

+ O((t — w)?/n) + O(n= %)}

NN



cn = /gn(t)dt

= 1 — CL(/L) + O( _2)
n 1 — o) O(n—3/2
gn(t) _ .00 : )—I— ( )
Cn 1 -2 4+ 0(n=2)

Fa@®{1 +0(n=3/2)}

For the mean:

5
a = —— —K4,
() Y 3‘|— K4
"X — -3
k3 = E K (skewness)
. o
_X_ _4
kg = E £l _3 (kurtosis)
| o

Ny



¢ Saddlepoint Approximation of the
Density of the Maximum Likelihood
Estimator in an Exponential Family

X1,..., Xy, iid
X; ~ fo(z) = A A(@)—B(0)+D(x)

MLE 0 : B/(9) =1yn , A(X;)(= A)

(1) Find the SAD approximation of the den-
sity of the mean A.

(2) Obtain the SAD approximation of the
density of 8 by transformation.



(1)

My = / 0+ A@)—B(O)+D(=) g,
—  BO+N)-B()
Ka(A) = B(0+ ) - B(0)

Saddlepoint A\g: K%(Xg) = A4
— Ag = 6—0

SAD approx. to the density of A:
fn(A, 0)
1/2 _ _ _
_ [ n ] (B(@)~B(6)~(-0)7B/(8))

27| B"(0)]
{1+0mn 1)}
(2)
B'(0) = A

Jacobian of the transformation:
|1B"(0)|dd = dA



SAD approx. to the density of the MLE 8:

fn(g; 0)
[n|B”(§)|] V2 B@)-BO)—~(—-0)T B (D))
27

{1+0(n 1)

n 11/2 enB(@)—ngTB’(g)
[E] -nB(0)—n0T B'(0)
{1+0mr™ 1)}

|B//(9‘)|1/2

NI



L(0)
L(9)
where L(-) is the likelihood function and
j(6) the Fisher information.

fn(0;0) = cn—rn|i(@)|*?{1 + O(n"1)}

Daniels in the discussion of
Cox(1958), J. Roy. Stat. Soc. B ;
Barndorff-Nielsen(1983), Biometrika

™



¢ Saddlepoint Approximation of the
Density of M-estimators

X1, - ,Xp iid random vectors from a distri-
bution F' on sample space X.

M-functional B(F) € RY:

Ep{y(X;B8)} =0
M-estimator 1), of 3:

Z Y(X;, Tn) = 0.

=1

Yo



=—h)
Fr,(®) = ene v Q@D poy ey |2/2
(1+0@(x™b)

A(t) (saddlepoint) :

9,
—K (\;t) = O
Y w(A 1)

ie. E{p(X:t)e v(Xiy
ie. Edf(X;t)}

Il
o ©

Ky(\t) = IogE{eAT‘”(X;t)}
B@ = B{-2YE00y,

S(t) = Edo(X; )yl (X)),

Field & Hampel (1982) Biometrika
Field (1982) Ann. Stat.
Almudevar, Field, Robinson (2000) Ann. Stat.

rayYal



e F; is the expectation taken with respect
to the conjugate density

fi(z) = C(®)exp{ A\ (1) (x; )} f ()
(conjugate density for the linearized ver-
sion of the M —estimator).

e [ he error term holds uniformly for all ¢
iIn @ compact set.

e Still most general (and accurate) second-
order formula!

e EXistence of cum. gen. fct.
+— Robustness

-~



Numerical example:

Saddlepoint approximation of the

Huber estimator

when the underlying distribution is Cauchy

The following table gives

% relative err. = 100(saddl.appr. — exact) /exact

of the saddlepoint approximation of upper
tail areas P[T,, > t] for the Huber estimator,
l.e. an M —estimator with

Y(x;t) c—t if lz—t|<c

c-sgn(x —t) otherwise.



Exact tail area: numerical integration of the
density obtained by fast Fourier transform
(A. Marazzi)

Saddlepoint approximation obtained by nu-
merical integration of the saddlepoint den-
Sity approximation. Direct saddlepoint ap-
proximations of tail areas are also available.

N



tn 1 2 3 4 5 6 4
1 -12.3 80 -44 08 -15 0.6 -0.7
3 -21.0 23.3 -126 141 -7r.0 85 -4.0
5 -33.6 33.6 -249 249 -16.2 18.6 -12.2
4 -43.5 40.3 -37.2 33.1 -28.0 27.8 -16.7
9 -51.2 448 -4r7r.8 38.6 -37.5 35.7 -29.8

% relative err. of the saddl. approx. for tail
areas of the Huber estimator (¢ = 1.4) for
the Cauchy underlying distribution;

from Field and Hampel(1982), Biometrika.

The errors are under control even in the ex-
treme tails.

For instance for n = 7 and t = 9 (relative
err. 30%), the actual difference is .99995-
99994 and the approximation is usable at
the .005% level.

~~



¢ Tail Probabilities

Convenient to have direct approx. of tail
probabilities
For the mean:

Fn(t) = P[Xn >t
X n o .
/ —/ M"(iT)e """ drds
t 2mJ—oc0
X n o
= / —/ exp{n[K (iT) —irs]}drds .
t 2mJ—c0

Reverse the order of integration and evalu-
ate the integral with respect to s:

Fn(t) = P[Xn>t]

% /_O:O exp{n[K (iT) —itt]}dr /it

— QLM/Ie:cp{n[K(z) — zt]}dz/z.



Use method of steepest descent by taking
into account that the function to be inte-
grated has a pole in z = 0.

Make a change of variable from z to w such
that

1
K(z) — 2zt = 5102 — ~yw,

where v = sgn(A\)(2(\t — K(\)))1/2,
w = v is the image of the saddlepoint
z = X(t), and the origin is preserved.

_ 1 ytioco 1 dw
PlRa>t = o [ " eaplnl w? — qul}Go(w)">,
21 Jy—ioco 2 w

where Go(w) = 242,

T his operation takes the term to be approx-
imated from the exponent, where the errors
can become very large, to the main part of
the integrand.



Go(w) has removable singularities at w = 0
and w = ~ and can be approximated by a
linear function ag + ajw, where

ag = limy,_0 Go(w) =1 and

a1 = (liMy—y Go(w)—1)/y = _I_A(K”(A))l/Q'

-~



The integrals can now be evaluated analyt-
ically and by using again the notation

sgn(A(1) At — K (A(£))))*/?
\/2 log C (1),

this leads to the following tail area approxi-
mation:

v

Fn(t) = PplTn > ]
1— <\/2n log C(t))
L cm 1 1
2mn \ d(DA®) /2 log C(t)
<1 - O(n_1)> :

where \(t), o2(t) = X(t) are defined above

and C(t) = Ky (N®)it) — (E{GA(t)T¢(X;t)})—1
Lugannani and Rice (1980), Adv. Appl.

Prob. for the mean, ¢ (x;t) = x —t,

Daniels(1983), Biometrika for location M-
estimators.

~ —



n t Exact Integr. SP Tail Area SP
1 0.1 .46331 46229 46282
1.0 .17601 .18428 .18557
2.0 .04674 .07345 .07082
2.5 .03095 .06000 .05682
3.0 .02630 .05520 .05190
5 0.1 .42026 42009 42024
1.0 .02799 .02799 .02799
2.0 .00414 .00413 .00416
2.5 .00030 .00043 .00043
3.0 .00018 .00031 .00031
O 0.1 .39403 .39393 .39399
1.0 .00538 .00535 .00537
2.0 .000018 .000018 .000018
2.5 .000004 .000005 .000005
3.0 .000002 .000003 .000003

Tail probabilities of Huber’'s M-estimator with
c = 1.5 when the underlying distribution is
a 5% contaminated normal.

"Integr. SP" is obtained by numerical inte-
gration of the saddlepoint approximation to
the density;

from Daniels(1983), Biometrika

-~y



n t Exact Integr. SP Tail Area SP
1 1 .25000 .28082 28197
3 .10242 12397 .13033
5 .06283 .08392 .09086
7 .04517 .06484 .07210
9 .03522 .05327 06077
5 1 .11285 .11458 .11400
3 .00825 .00883 .00881
5 .00210 .00244 .00244
7 .00082 .00105 .00104
9 .00040 .00055 .00055
9O 1 .05422 .05447 .05427
3 .00076 .00078 .00078
5 .000082 .000088 .000088
7 .000018 .000021 .000021
9 .000006 .000006 .000007

Tail probabilities of Huber’'s M-estimator with
c = 1.5 when the underlying distribution is
Cauchy.

"Integr. SP" is obtained by numerical inte-
gration of the saddlepoint approximation to
the density;

from Daniels(1983), Biometrika

-~



¢ Marginal Distributions

Often interested in marginal densities and
tail probabilities of a single component, say
the last one.

This requires the integration of the joint
density with respect to the other compo-
nents.

Apply Laplace's method to

[ fr,(0ts - dty =

/ cnexp{nK (M) D)} | BAIZ(t) |12 dty - -dty_1
(1 - O(n_l))

DiCiccio, Field, Fraser(1990), Biometrika
Tingley & Field(1990), JASA

Daniels & Young(1991), Biometrika
Wang(1993), J. Appl. Prob.

Jing & Robinson(1994), Ann. Stat

Fan & Field(1995), Can. J. Stat.

Davison, Hinkley, Worton(1995), Stat.&Comp.
Gatto & Ronchetti(1996), JASA



¢ Some Selected Applications

e ENngineering
signal detection
Helstrom and Ritcey (1984), IEEE Tr.
Aer. Elec. Sys.

e Biostatistics

— Survival times in flowgraph models
Butler and Bronson (2002), JRSS B
Yau and Huzurbazar (2002), Stat. in
Med.

L&, Heritier, Hudson (2009), Comp.
Stat. & Data An.

— Kolassa (2003), Stat. Meth. in Med.
Res.



e Economics

— insurance
Embrechts et al. (1985), Adv. Appl.
Prob.
Gatto (2004), Astin Bull.

— information and entropy economet-
rics
Imbens, Spady, Johnson (1998), Econo-
metrica

— credit risk
Gordy (2002), Journal of Banking and
Finance

— trans. densities of Markov processes
ATt-Sahalia and Yu (2006),
J. Econometrics



¢ Small Sample Asymptotics and
Robust Statistics

Use small sample asymptotics

(1) as a technique to obtain accurate tail
probabilities for robust estimators and
test statistics;

(2) as an analytic tool to investigate the ro-
bustness properties of statistical proce-
dures and to develop new robust proce-
dures.



Ex. of (2)

e Tail Area Influence Function
IF on SSA approx. of Pgp[1Ty > t]
Field & Ronchetti (1985)
Ronchetti & Ventura (2001)
Garcia-Pérez (2003, 2006, 2008)

e Saddlepoint Test; see below

e Robust Divergence Estimators and Tests
Toma & Leoni-Aubin(2010)
Toma & Broniatowski(2011)



Other Approaches

e EXxact Representation
Jureckova (1999)

e Higher-order Improvements
Bellio, Greco, Ventura (2008)
La Vecchia, Ronchetti, Trojani (2012)

e Robust Bootstrap and Subsampling
Salibian-Barrera & Zamar (2002)
Camponovo, Scaillet, Trojani (2012)



¢ Saddlepoint Test

Test a hypothesis

u(B) =no € R, q1 < g

Test statistic based on M-estimator T;, of 3.

qgp =1
Can use saddlepoint approximations for marginal
distribution of u(T}).

qr > 1

Use one-dimensional test statistic h(u(Ty))
whose distribution can be approximated with
relative error O(n—1).

Robinson, Ronchetti, Young (2003),
Ann. Stat



Simple Hypothesis

Hy: B =g € R4

p—wvalue = Py [hn(Tn) > hn(tn)]
(1-— QQ(hn(tn)))(l + O(n_l))

o Qq(.): cumul. distr. fct. of x2
e 7, M —est. and t,, its obs. value
o hn(y) = 2nh(y) = 2n sup{—Ky(X;y)}

¢ Ky(\; B) = log E{N ¥(XiM)}
cumulant generating fct. of ¢(X; 3)



Sketch of the proof

(1) Density of M-estimator

=—h®
Fra(®) = eae Ko QWD | gz ey |-1/2
(1 + O(n_1)>
A(t) (saddlepoint) : a%Kw(A?t) =0

B(t) =0(1)  ¥(t)=0(1)

Field & Hampel (1982) Biometrika
Field (1982) Ann. Stat.

Almudevar, Field, Robinson (2000) Ann. Stat.



(2) Integration and transformation

p-value
= [, ene™™" W | By) | Z() |72 (1 + 0(n~ 1))y
= [oene™ D | Ban~Y2) || £(en /) |12
0214 0(n~1))dz
A={z|h(zn"12) > h(tn)}
Two transformations .

z —> p =
v(polar transf.)

2nh(n~1/2v71(p))
P2

P1
p2

Jacobians :

(T2 s
. 52

PR N et o n~1/2(;T;)1/2
JfU — (Z Z) 2 J’U — —1/oNT
2h!(zn—1/2)T,



_ [ ~Y -1

= /hn(tn)cne 2 ¢ /5(w,32)(1+0(n ))dso
\Sq

where

6(w,s2) = A(z)

and Sq :

/

(sz)Q/2
2h!(zn=1/2)T,
surface of the ¢g-dim. sphere

™ /™

\

~~

/

n~1 | B(zn"1/2) || =(zn1/2) |71/2

dw



(3) Expand A(z) about 2z =0

AG) = Sn M2 | B0) || £(0) |13

(1 4+n"Y2p(z) + 0(n" 1))

b(z) is an odd fonction : b(z) = —b(—=2)
— [ b(z)dsp, =0
Sq

— term 0(n~1/2) disappears !



Discussion

(1) h(y) = supp{—Ky(Ny)} = —Ky(AMy);y)

where A(y) is the saddlepoint satisfying

0

P3N »(Ay) = 0.

— h(y) is the exponent in the saddle-
point approx. of the density of M —est.

— essential quantity for Laplace
approx. of integrals to marginalize

— when ¥ (z;8) =z — 5,
h(-) is the Legendre transform of the
cumulant generating function of X

™ S



(2) The approx. has relative error O(n™1)
in the normal region @ = O(n~1/2),
where @ = [2h(tp)]1/?

To get this result in the large devia-
tions region u < C, we can get a
"Lugannani-Rice adjustment”

p—value = 1 — Qq(nﬁz)

1, a2
= 4+cpu? e "2

n 02

G(u) — 1]
= +(1 - Qq(na?)) O(n™ 1)

where 4 = [2h(tn)]1/2, ni2 = hp(tn),
cn = n?/2/(29/21 (q/2)).

G(u)—1
02

U

Since
get:

iIs bounded for u < C', we

p — value = (1 — Qq(n@®)) (1 4+ O0(n~ ' +@*))

™~



(3) Expansion about z = 0 gives
(w.l.o.g B"(0) = 1)

2n h(zn_l/z) = hn(zn_l/Q)
= T2)Q +n"Y2%a(2) +0(n™1))

Test statistic h, (7)) asymptotically
(first order) equivalent to Wald and
score test based on M —est. Tj.

w

In particular: same (first order) ro-
bustness properties;
cf. Heritier & Ronchetti(1994), JASA

e Relative error O(n™1) for h(.).
Does not hold for Wald, score,
likelihood ratio tests (classical or robust).
h(.) is a " better scale” for approach-
ing y2 and a better (pivotal) quantity
to bootstrap.



(4)

(5)

(6)

(7)

T he saddlepoint test is the log-likelihood
ratio test when T, is the MLE and the
model belongs to the exponential fam-
iIly; see below.

(Very) special case:
F=N(0,1); Xn~N(0,1)

2
Ky(Ny) =2 — Xy

LK, Ny) =XA—y=0=Ay) =y.

hw) = supal-—K (i)} = —Ky(Aw)iv)
2
= sup{~"5 + Ay} = 7

The result can be extended to the case
where the Xzfs are not identically dis-
tributed (ex. regression).

Test can be inverted to obtain confi-
dence regions.



The Saddlepoint Test for Exponential
Models is the Log-likelihood Ratio Test

Xq,..., Xy, iid

X; ~ fy(z) = " A@)=BO)+D ()

HO . 9 p— 90
log fo(z) = 61 A(z) — B(6) + D(x)
W(z0) = 995 — Az) - B(6)

MLE 0 : B'(9) =1xn , A(X;)(= A)

™7



Ky (A 0) = log EF@o

= log [ M V0 fy (2)de
— log / A A@)-ATB/(6) | 68 A(x)—B(60)+D () 4.

e/\TwX;e)]

— _A\TB'(9) — B(6p) + log / e +00) A(@)+D(@) g
= —\'B'(6) — B(6o) + B(A + 6p)

A Ky(X6) =0 s —B'(O)+B(O+6)=0
& A=6-6g

™ -y



h() = sup [—K¢(A; e)} = —Ky(0 — 00;6)

= (0-60)'B'(6) + B(6g) — B(6)

= 2n
=A

—

(6-60)" B'(9) +B(fo) - B(é)}
= 2 (éT i A(X;) — nB(§)>
1=1

— 2 (OOT ST A(X;) - nB(eo))

=1

= 21log
L(6p)

where L(-) is the likelihood function.




Composite Hypothesis

Ho:u(B)=mn9 , u:R?I— RN

p — value

Py, [An(u(Th)) > hn(u(tn))]
(1 = Qqy (hn(u())))(1 +0(n™ 1))

o Q¢ (.): cumul. distr. fct. of x7,

e 7, M —est. and t, its obs. value

2nh(y)

2 inf S —K,,(\;
n{ﬁtul(%)=y} lip{ A B

hn(y)

[ Kw()\, B) — |Og E{GAT’(b(X;ﬁ)}
h(.): Legendre transform of K,(.;.).
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Sketch of the proof

1. g-dimensional
4 joint density of T,

1

Laplace’s method

q1-dimensional  joint density of u(T})

Fur,y @) = e "W (y) - (1 4+ O(n™1))

2. Continue as in the case of a simple hy-
pothesis

h(-) . profile —K,;,(A(B); B)

Vol aY



¢ Relationship with
Nonparametric Techniques

Saddlepoint approx. require the specifica-
tion of the underlying distr. F of the obser-
vations.

F' enters in the approximation only through
the expected values defining K¢(A;t), B(t),
> (t).

— estimate F by its empirical distr. F

— empirical (or nonparametric) saddlepoint
approx.

In particular

Ky(\t) = log{n ! zn: exp{ N (x4 1)},
i=1

where \(t), the empirical saddlepoint, is the
solution of the equation

> (e eap{3 (s 1)} = 0.

=1



e Empirical saddlepoint approx.:
alternative to bootstrap

e Resampling is replaced by the computa-
tion of the root of the empirical saddle-
point equation

e Error properties of these approx., see
Ronchetti and Welsh (1994), JRSS B

Sowell (2007, 2009)
Holcblat (2015)

Aeberhard, Cantoni, Heritier (2017)
Comp. Stat. & Data An.

™



Connection Between Empirical Saddlepoint
Approx. and Empirical Likelihood

Monti and Ronchetti (1993), Biometrika
L 1 . 1
nK¢(A; t) = —§W(t) + gn_l/Qr(u) + O(n_l)a

where u = n1/2(¢t—T},), T, is the M —estimator
defined by 9 (-;-),

W) =2 Y log{1 + &0 v(xi;0)}

1=1
IS the empirical likelihood ratio statistic
(Owen (1988), Biometrika), where £(t) sat-
isfies

- Y(x;;t) o
2 T O D)

r~ ~



Furthermore,

mn
M(u) = —n" 1Y (Wl VHTE (2 T, F)},
1=1

where
[F(z; T, F) = B(Tn) Y (xi; Tn)

IS the empirical influence function of Tj,,
V = B(T) 'S (T){B(T)T} !

IS the estimated covariance matrix of Ty,

_ " oY(ay;
B(T,) = n 1 Z — w(gjt ) |Tn7
=1
S(Tn) = n 1Y (as; Ta)w(xg; T)'

=1

— —2nKy(X;t) and W(t) are asymptoti-
cally (first order) equivalent

— correction term for empirical likelihood
ratio statistic to be equivalent to the empiri-
cal saddlepoint statistic up to order O(n™1).



This correction term depends on the skew-
ness of IF(x; T, F) and in the univariate case,

én_l/zr(u) = 37324,

where

n n
a = % SO IF(w; T, F)3/{Y IF(xy; T, F)2}3/2
i=1 i=1
is the nonparametric estimator of the ac-
celeration constant appearing in the B(C,
method of Efron (1987), JASA, eqgn (7.3),

p.178.



Empirical Exponential Likelihood Tests

Distr. FF unknown — nonparametric version
Basic idea:

e Define an empirical distr. Fy with
(exponential) weights (p1,...,pn)
at the observations (x1,...,xn)

— closest (in Kullback-Leibler) distance

to the empirical distr. with weights

1
Pi — 4,

— consistent with the null hypothesis

Hg @ u(B) = no.

e Compute K{%(A;B), the empirical
cumulant generating fct. of Fj.

e Compute the test statistic A(.) and com-
pare with quantiles of a X2 distr.

e



e Related to exponential tilting;
cf.
Efron(1982), SIAM
DiCiccio&Romano(1992),Int. Stat. Rev.

and exponential empirical likelihood

cf.

Monti & Ronchetti(1993), Biometrika

Field, Robinson, Ronchetti(2007), Ann.
Inst. Stat. Math

e Replace bootstrap resampling by
optimization

[ —



¢ Saddlepoint Test: Applications

r—



Example 1 RRY(2003)

Y(x;0) =x—60, ¢q=3, n=20

X, Is distributed as a vector of 3 indepen-
dent exponential variables with means 1.
Elementary calculations give:

3
h(y) = > [(yj —1) —logy,]
j=1
In this case T,, = X,, and
nX, is distributed as a vector of 3 indepen-
dent Gamma variates with shape parameter
n.
Generate 10,000 Monte Carlo replicates of
2nh(X,) and compare these to the approx-
imating x3 distribution.

ol aY



() (b)

0.05

0.0

MC quantiles of h
4
relative error
-0.05

-0.10

-0.15

0
-0.20

0 2 4 6 8 0.0 0.02 0.04 0.06 0.08 0.10
quantiles of gamma(3/2) tail probabilities

Figure 1 (a)

Q-Q plot of 10,000 Monte Carlo samples of
2nh(Xy) with the theoretical quantiles
(taking each 100th quantile in the plot)

Figure 1 (b)

Relative errors of the tail probabilities from
10,000 Monte Carlo trials compared to the
X3 approximation.

The relative error is

(P(2nh(Xpn) > va) — a)/a,

where P(X% > va) = «Q,
for @ = .02,.04,---,.1.

— N\



Example 2 RRY(2003)

As in Example 1

Y(x;0) =x2—0, g =3, n=20

Draw a sample of size n from a

3 dimensional distribution of independent
exponential variables with mean 1.

Obtain h(z,) and for each of 10,000
bootstrap samples from Fy obtain h(z}).



(@) (b)

relative error
0.10 0.15 0.20

MC quantiles of h
0.05

0.0

0
-0.05

0 2 4 6 8 0.0 0.02 0.04 0.06 0.08 0.10
quantiles of gamma(3/2) tail probabilities

Figure 2(a)
Q-Q plot as in Example 1

Figure 2(b)
Relative error for tail areas of the
v2— approximation as

(P(2nh(X2) > va) — a)/a,

where P(X% > va) = «,
for a = .02,.04,--- .1
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Example 3: Robust Regression RRY(2003)

yzchH—I—e,

where § = (6(1) 9(2) 9(3)) » = (1,2(2) £(3))
2(2) 2(3) are independent UJ0, 1]

Hp: 02 =9 =0

The errors e are from the distribution

(1 —e)P(t) + ed(t/s) with different settings
of €,s. The M-estimator of T;, satisfies

1=1
where

_ T
B(y: 0) = v (y = 9) 2,
for yYe(r) = min{c,max(—c¢,r)} and ¢ = 1.5.

T he scale parameter o is estimated by
Huber's Proposal 2.

—



Test statistics:

e empirical likelihood statistic 2nh(u(Ty))

e robust Wald, score, and likelihood ratio
test statistic

10,000 Monte Carlo samples of size n = 20
For the 25 values of « = 1/250,2/250,-- -,
25/250, we obtained the proportion of times
out of 10,000 that the statistic, S, say, ex-
ceeded vo, Where P(x3 > va) = a.

For each Monte Carlo sample we obtained
299 bootstrap samples and calculated a boot-
strap p-value, the proportion of the 299 boot-
strap samples giving a value S, of the statis-
tic exceeding Sj,.

The bootstrap test of nominal level a rejects
Hg if the bootstrap p—value is less than «.

v &Y, |
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Figure 3

Actual

Size VS.

Actual size

Actual size
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(b), bootstrap approx.

0.02 0.04 0.06 0.08 0.10

Nominal size

(d), bootstrap approx.

0.02 0.04 0.06 0.08 0.10

Nominal size

nominal size for h(u(Ty))
and the three other tests based on 2 and

bootstrap approx. (a), (b): e~ d(.)
(c), (d): e~ .99dP(.) + .01d(./5)



It is clear that the x2— approximation for
h(u(Ty)) is much better than the correspond-
ing y2— approximations for the other statis-
tics.

Moreover, tests based on all the statistics
are quite accurately approximated under the
bootstrap.

—



Example 4: Robust GLM
L6 & Ronchetti (2009), J. Mult. Anal.
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Example 5: Diffusion Models
Czellar & Ronchetti (2010), Biometrika

Geometric Brownian motion with drift:

dy; = Byt + oy dWry,

where W; is a standard Wiener process.

Estimation and testing by indirect inference
using an auxiliary model obtained through a
simple discretization:

yr = (1 4+ p1)ye—1 + puoys—1¢€t,
where ¢, ~ N(0,1).

— Y



Parameter: 0
ROBUST \ Step 2
Data: Simulation for agiven 0 ;
VoY YooY

Auxiliary model: F

Parameter: Tt

Tt ™
! Calibration ;
. Step1 | l | Step3 |
8

Schematic illustration of the robust
indirect inference algorithm
Genton & Ronchetti (2003) JASA
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Actual size vs Nominal size
of simple and composite tests
8 =—-0.05, ¢ =0.2, n=140.
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¢ Conclusions

Small Sample Asymptotics can be ap-
plied to a large class of models. Its ap-
plication is particularly useful in robust
statistics.

SSA provides high accuracy for moder-
ate to small sample sizes in the tails of
the distribution.

The saddlepoint test is more accurate
than classical tests. It can be applied
whenever a score function is available.

Other applications: quantile regression,
composite likelihood, time series in fre-
quency domain.

Potential use of SSA from an analytic
point of view.
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