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¢ Motivation
General Problem

Tail probabilities P[T,, > t] are needed
to carry out statistical inference
(tests and confidence intervals).

Unless T}, has a simple form (e.g. linear)
and/or

the underlying distribution of the observa-

tions has a particular form (e.g. normal),

tail probabilities cannot be computed ex-

actly.

—— rely on asymptotic approximations



e A good asymptotic theory is one that
works when n = 1.

e [ he purpose of asymptotic theory in statis-
tics is simple : to provide usuable ap-
proximations before passage to the limit.

J.W. Tukey



Stirling’'s Formula

n! ~ V21 e " nt1/2

n n! Stir. appr. % rel. err.
1 1 .92 3.0
2 2 1.92 4.0
3 6 5.84 2.7
4 24 23.51 2.0
5 120 118.02 1.6




¢ Asymptotic Theory
Central Limit Theorem

Xl,...,Xn ZZd
E[X;] = p ,var[X;] = 02 < o0

CLT : F(t) —» P(t) n— oo



Nonlinear statistics:

Linearize statistic
by Taylor or von Mises expansion



¢ M-estimators

1. Zn iid Z:~ F
T(F):Ep[y(Z; T(F))] =0
F = F empirical distribution :
R n
Ty =T(F): 3 6(Z;iTn) =0
1=

M-estimator
Huber(1964), Ann. Math. Stat.



Consistency of M-estimators

Following e.g.:
Newey & McFadden(1994)
Handbook of Econometrics, Ch. 36

©: metric space (parameter space)

Q. ©—>R

Qn. sequence of random functions on ©
Ty = arg mMaXgeo Qn(0)

Assume:

(C1) uniform convergence
P
SUpgeo |@Qn(0) — Q(O)] — O

(C2) well-separated point of maximum
There exists a point 6p such that

Q(6o) > SUPgcoN\G Q(0)
for every open set G that contains 6.

Then, T}, i) 0p as n — oo.



In our case:
e /1,...,Zn iid ZZ-NF:FQO
o Q(0) = Er[p(Z;;0)]
1 n
o Qn(0) = ,le(Zi; 0)
1=

e 7, IS an M —estimator
with 1 (z;0) = 5p(2; )

e (C1): law of large numbers required to
hold uniformly in 6



Proof:

e >0
G = {0 € ©]d(0,0p) < €}, an open e—ball
centered at 6.

To show: P(1Tn ¢ G) — O.

Define: n = Q(6p) — SUPgco\G Q(0).
By (C2), n > 0.

Then

{Tn ¢ G} = An = {Q(Th) < Q(6p) — n}, thus
P(Tn ¢ G) < P(An), and

we show that P(A,) — O.



Define:

B, = ﬂQn(Tn} — Q(Tn)| > 77/2}
Cn = {|@Qn(0g) — Q(00)| > n/2}
Dyn = {supgeo |Qn(f) — Q)| > n/2}

Bn € Dp, Cn € Dy
= P(Bn) < P(Dp), P(Cn) < P(Dn), and

(If Apn, BE,CE should occur simultaneously,
we must have

Qn(Th) < Q(0p) —n/2 < Qn(bo),

which contradicts that 7;,, maximizes Qn. )



T hen

P(A) P(An U (BrUCp))

P(Ap, N (BpUCR)®) + P(BnUCH)
P(AnN B, NCy) + P(BpUCh)
P(0) + P(B, UCh)

P(Bn) + P(Ch)

2P(Dnp)

Il IA

A IA |

By (C1), P(Dn) — 0 and this proves the
result.



Fisher consistency of M-estimators
Fisher consistency: T'(Fp,) = 6o

Sufficient condition for Fisher consistency
of M—estimator: Ep, [¢(Z;;0)] =0

If T'is Fisher consistent and continuous (with
respect to the weak topology),
then T is consistent.

Proof:

F—s Fy, = Ty =T(F) -5 T(Fg,) = 6.



Asymptotic Normality of M-estimators

210 Zm iid  Z;~F Huber (1967)

(A1) T(F) is an interior point of the parame-
ter space and an isolated root of

Ep [(Z;; T(F))] = 0.

(A2) YP(z:t) = %w(z;t) is continuous at t =
T(F) uniformly in z.

(A3) Ep [v(Z;; T(F)) - ¢'(Z; T(F))|
= Q(T,F) < 0.

(A4) Ep [—¢(zi;T(F))} = M(T,F) < oo and
nonsingular.

Then, if T, - T(F) as n — oo,

D
Vi (T —T(F)) ~ N(0,V(T,F)),

n—oo

where V(T,F) = M~ NT, F)Q(T, F)M (T, F).



Proof:

0o .= T(F)

e Taylor expansion of the estimating equa-
tion

0 = 'glw(zz';Tn)

— .;1¢(Zi? 90) _l_ ,;1¢(Zi; 9*) : (Tn — 90),

S

3

where [|0* — 0o|| < ||Th — 65|

= Vn(In —0) = )
{%g:l —¢(Zz19*)} L3 (% 0o)

B

1=1



e Central Limit Theorem, Law of Large
Numbers and Slutski Theorem

D

— Z;:0o) N 0,
f?“ A%
1M (2. 6%) =
g@; _w 19 -

1 2 ,
— Z —(Z;; 00) +
Zi=1 )
n — oov I P
M
1 = * i .
ﬁ ; O(Zi 0%) — b (Zs; eo>]/
| P
0

(consistency and (A2))



Special case :

F' = Fy with density fy

(2, 0) = 8IO%§Q(2)

= Ty : Maximum Likelihood Estimator.

In this case :

Q(T, Fp) = M(T, Fy) = J(0)

(Fisher information)

= V(T,Fy) = J~1(0)



Properties

e Influence function:

[F(z; 9, F) = M3, F) "1 (z; T(F))

e [0 any asymptotically normal estimator,
there exists an asymptotically equivalent
M-estimator.

Model Fy, a Fisher consistent estimator
U for 0 (i.e. U(Fyp) = 0) with IF(z; U, Fyp)

—— M-est. defined by the M-functional
TM

Ep[y(z; ™) =0,
where ¢(z;0) = I[F(z; U, Fy) has the same
asymptotic distribution as U.

Hampel, Ronchetti, Rousseeuw, Stahel(1986),
p. 231.



Proof:

e TM is Fisher consistent since by construc-
tion

Ep,[(Z; TY (Fp))] = Eg,[IF(Z; U, Frag))l = 0

— TM(FQ) =0

IF(z;TM | Fy)
_ (_E 0W(Z;t)
ol ot t=TM(Fp)
oWw(Z; 0)1\ 1L
o (—EFQ_ w%g )D Y (z; 0)
OIF (2 U, Fy)
- <_ EF@[ o6 :

])_1w<z;TM(Fe>>

D_lIF(z; U, Fy)

e First term of von Mises expansion:
0—0 = U(Fy) — U(Fy)
= [ IFG:U, B f()dz + o(17 - 6])

NN\



Derivative with respect to 0 at 8 = 6:

_ 8U(F~)| _/IF( UFg)afHéz)
_ _/aIF(z U, Fg)f (2)dz
e

where [ is the identity matrix.

— IF(z; TM Fy) = IF(z; U, Fy)

— M-estimator defined by v and U have
the same asymptotic properties



Questions

(i) How good is the normal approx. 7
— Estimate error in CLT

— Improve this by providing asymptotic
expansions

(ii) Simple as. approx. of F,(-) which works
well for small n

Frn(t) — 1

?
(1) — 1 = CLT -

(iii) Ast — oo :

1—Fp(t) n — 0o
=0 Lt o0

would like e.g.

(Large deviations)

NN



~~

n t P P % rel.error

10 15 6.98-1072 5.69-102 18
20 4.99.103 7.83.10°% 84
25 221.100% 1.05-10°° 99
100 125 9.38-1073 6.21-103 34
150 65.92-107°% 2.87.10°7 95
175 2.78-10"10 3.19.10 14 99
500 550 1.15-1072 1.27-.102 10
600 1.23-10° 3.87-10°° 68
625 1.01-107 1.13-10°8 89

Exact tail probabilities P = P[T},, > t],
normal approx. P,

relative error | P — P | /P,

statistic T, = 5 201 (X7 + Y2),

X, and Y; iid N(0,1),

exact: T ~ 3X3,.

Ny



Unfortunately the asymptotic (normal)
distribution can be a poor approximation of
tail areas especially for moderate to small
sample sizes or far out in the tails.

This is exactly the region of interest for con-
structing confidence intervals and tests.



¢ Berry-Esseen Bound
Berry (1941); Esseen (1942)

If E|X;|3= p < oo, then
3p
o3y/n

| Fn(t) — ®(t) |< vt,n

Remarks

e Bound depends only on the first three
moments

e Can replace factor 3 with better upper
bound (0.7975)

e Can be generalized to variables without
third moment

e Berry - Esseen bound usually intolerable
except for large samples.
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¢ Conclusions

e [ he asymptotic theory is a useful tool to
understand the behavior of an estimator
or test statistic.

e However, it can be unreliable as an ap-
proximation for moderate to small sam-
ple sizes and when approximations in the
tails of the distribution are required.

VY 4



