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Try to improve CLT by approx.

Fn(t) by
∑∞
j=0

Aj(t)

nj/2
such that

∣
∣
∣
∣
∣
∣

Fn(t)−
r∑

j=0

Aj(t)

nj/2

∣
∣
∣
∣
∣
∣

≤ Cr(t)

n(r+1)/2

• lim
r→∞

r∑

j=0

Aj(t)

nj/2
may or may not exist for

fixed n;

• error is of the same order of magnitude

as the first neglected term
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� Basic Idea

Can try to improve the accuracy by using

e.g. Edgeworth expansions;

cf. Feller(1971), Ch. 16.

They are obtained by a Taylor expansion of

the characteristic function of the statistic of

interest around 0, i.e. at the center of the

distribution, followed by a Fourier inversion.

This leads to expansions of the distribution

in powers of n−1/2, where the leading term

is the normal density.
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� Charlier Differential Series (1905)

Distr. H(x) G(x)

Charact. fct. χ(u) ξ(u) =
∫

eiuxdG(x)

Cumulants βr γr = (−i)r drdur log ξ(u)|u=0

Let us first express H(x) through G(x) by

means of their characteristic functions:

χ(u) = exp{
∞∑

r=1

(βr − γr)
(iu)r

r!
}ξ(u)

Suppose all derivatives of G vanish at the

extremes of the range of x. Then, by inte-

gration by parts

(iu)rξ(u) is the Fourier transform of (−1)rG(r)(x)
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Then, by Fourier inversion:

H(x) = exp{
∞∑

r=1

(βr − γr)
(−D)r

r!
}G(x)

D: differential operator which denotes dif-

ferentiation with respect to x.
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• r = 1:

ξ(u) =

∫ +∞

−∞
eiuxg(x)dx

=

[
1

iu
eiuxg(x)

]+∞

−∞
︸ ︷︷ ︸

= 0

− 1

iu

∫ +∞

−∞
eiuxg′(x)dx

Thus,

(iu)ξ(u) =
∫ +∞

−∞
eiux(−g′(x))dx

is the Fourier inverse of −g′(x).

•

y = a1x+ a2x
2 + . . .

ey = 1+ y+
y2

2
+
y3

3!
+ . . .
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� Edgeworth Expansions

X1, . . . , Xn iid E(Xi) = 0 = χ1(Xi)

var(Xi) = σ2 = χ2(Xi)
r ≥ 3 χr(Xi) = λrσr

Fn(t) = P [Tn < t] , Tn =
1

n1/2

n∑

i=1

Xi
σ

Edgeworth uses Charlier differential series

to approx. Fn(t) by Φ(t) (cumul. normal)

expanding exp{· · · } and collecting terms ac-

cording to powers of 1
n1/2

.
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H(·) = Fn(·) G(·) = Φ(·)
χ(·) = ψn(·) ξ(u) = exp{−u2/2}

β1 = χ1(Tn) = 0 = γ1 = 0
β2 = χ2(Tn) = 1 = γ2 = 1

βr = χr(Tn) = λr
nr/2−1 γr = 0 r ≥ 3
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ψn(u) = exp

{ ∞∑

r=3

λr

nr/2−1

(iu)r

r!

}

· e−u2/2

= exp

{
λ3

n1/2
(iu)3

3!
+
λ4
n

(iu)4

4!
+

λ5

n3/2
(iu)5

5!

+ · · ·
}

· e−u2/2

Collecting terms of order 1
n1/2

, 1n,
1

n3/2
, · · · , we

get:

ψn(u) =

{

1

+
1

n1/2
λ3

(iu)3

6

+
1

n

[
1

2
λ23

(iu)6

(3!)2
+ λ4

(iu)4

4!

]

+
1

n3/2
· · ·

}

· e−u2/2
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By Fourier inversion, we obtain the Edge-

worth expansion for the cumulative distri-

bution:

Fn(t) = Φ(t)

− 1

n1/2
λ3
6
Φ(3)(t)

+
1

n

[
λ4
24

Φ(4)(t) +
λ23
72

Φ(6)(t)

]

+ · · ·
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For the density:

fn(t) = φ(t)

− 1

n1/2
λ3
6
φ(3)(t)

+
1

n

[
λ4
24
φ(4)(t) +

λ23
72
φ(6)(t)

]

+ · · ·
= φ(t)

{

1

+
1

n1/2
λ3
6
H3(t)

+
1

n

[
λ4
24
H4(t) +

λ23
72
H6(t)

]

+ · · ·
}

where

H3(t) = t3 − 3t

H4(t) = t4 − 6t2 +3

H6(t) = t6 − 15t4 +45t2 − 15

are the Hermite polynomials.
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Remarks

• 1
n1/2

term (λ3) corrects for skewness and

1
n term (λ4) for kurtosis.

• In particular:

fn(0) =
1√
2π

{1+1

n
[
1

8
λ4−

5

24
λ23]+O(n−2)}

• If the first K moments exist, then as

n→ ∞:

Fn(t)−Φ(t)−
K∑

r=3

Pr(−Φ(t))

nr/2−1
= o

(
1

nK/2−1

)

,

where Pr(·) is a polynomial of degree

3(r−2) with coefficients depending only

on λ3, · · · , λr.

13



• The Edgeworth approximation is not a

distribution function:

0−1 range and monotonicity can be vi-

olated in parts of one or both tails.

Numerical instability.

• Fisher-Cornish expansion for quantiles.

• Edgeworth expansion with respect to (e.g.)

χ2 distribution instead of the normal

→ Laguerre polynomials instead of Her-

mite polynomials.
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� Applications

Numerical Examples

See Chapter 2 in

Field, C. and Ronchetti, E. (1990)

Small Sample Asymptotics

IMS Lectures Notes
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Bootstrapping Studentized Statistics

We want to compare the bootstrap distri-

bution of a statistic θ̂ with its studentized

version.
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Edgeworth expansions for the

original statistic:

PF [
√
n(θ̂ − θ) ≤ t] = Φ(

t

σ
) +

1√
n
p(
t

σ
)φ(

t

σ
)

+ O(
1

n
) (1)

PF [
√
n

(
θ̂ − θ

σ̂

)

≤ t] = Φ(t) +
1√
n
q(t)φ(t)

+ O(
1

n
) (2)

Edgeworth expansions for the

bootstrap version:

PF̂ [
√
n(θ̂∗ − θ̂) ≤ t] = Φ(

t

σ̂
) +

1√
n
p(
t

σ̂
)φ(

t

σ̂
)

+ Op(
1

n
) (3)

PF̂ [
√
n

(
θ̂∗ − θ̂

σ̂∗

)

≤ t] = Φ(t) +
1√
n
q̂(t)φ(t)

+ Op(
1

n
) (4)
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Comparison:

(3)− (1) = Op

(

Φ(
t

σ̂
)−Φ(

t

σ
)

)

= Op(σ̂ − σ)

= Op(
1√
n
)

(4)− (2) = Op

(
1√
n
(q̂(t)− q(t))

)

= Op

(
1√
n
(σ̂∗ − σ̂)

)

= Op(
1

n
)

Bootstrapping the studentized statistic cap-

tures the 1√
n
term of the Edgeworth expan-

sion and provides second order correctness.

Hall(1986, 1988)
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� Conclusions

• Useful theoretical tool to study the higher-

order properties of estimators and test

statistics.

• By construction Edgeworth expansions

provide in general a good approximation

in the center of the density, but they can

be inaccurate in the tails, where they

can even become negative.

• Absolute error.
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