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Introduction : stable distributions

Stable distributions

Stable distributions are extremely attractive from several points of view.

Stochastic properties

(1) Stable distributions are the only nondegenerate distributions with a domain of
attraction : non-trivial limits of normalized sums of independent identically
distributed terms are necessarily stable.

(2) Stable families are quite flexible : four parameters

θθθ := (α, b, c , δ) ∈ ΘΘΘ = (0, 2]× [−1, 1]× R+ × R
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Introduction : stable distributions

(a) δ and c are location-scale parameters :

f(α,b,c,δ)(x) = fα,b,1,0

„

x − δ

c

«

/c.

(b) α and b are shape parameters :

- α, the characteristic exponent is a tail index : the smaller α, the heavier the tails

- b is a skewness parameter : f is symmetric if b = 0, totally skewed if |b| = 1.

(3) some well-known stable densities

(a) α = 2 (any b ∈ [−1, 1]) : Gaussian distribution, f (x) = 1√
4π

e−x2/4.

(b) α = 1 and b = 0 : Cauchy distribution, f (x) = 1

π(1+x2)
.

(c) α = 1/2 and b = 1 : Lévy distribution f (x) =
q

1

2π
e−1/2x

x3/2 .
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Introduction : stable distributions

Stochastic modelling

Empirical evidence of non-Gaussian stable behavior is present in a variety of fields,
among which economics, insurance, finance, signal processing, teletraffic
engineering, ...

... where neglecting heavy tails and asymmetry results in underestimated risks ,
reckless decision making, and quite severe losses.

Student families (generally with three degrees of freedom or more) therefore are
quite popular in such areas—but Student distributions are symmetric, and Student
tails with three or five degrees of freedom often are still too light :

Only stable tails provide a reasonable account for a number of stylized facts

Moreover, ...
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Introduction : stable distributions

Statistical inference : Who’s afraid of heavy tails ?

Stable families : a statistician’s dream ?

Contrary to a widespread opinion, statistical experiments involving stable

noise are extremely well-behaved.

In this talk, we concentrate on linear (regression) models driven by stable errors.

We show below that linear models with i.i.d. stable errors are Locally
Asymptotically Normal (LAN, and even ULAN, with traditional root-n contiguity
rates)—a most comfortable situation, under which all inference problems, in
principle, can be solved in a locally asymptotically optimal way.

... although, as a rule, the traditional Gaussian procedures are not valid anymore
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Introduction : stable distributions

Statistical inference : Who’s afraid of heavy tails ?

Stable families : a statistician’s nightmare ?

No closed form for stable densities ! ! (except for the Gaussian, Cauchy and
Lévy densities).

No finite moments of order p for any p ≥ α ! (except for the Gaussian).

No standard central-limit behavior of traditional (Gaussian) statistics

Hence,

1 no closed-form likelihoods, even less for MLEs

2 no closed forms for optimal scores (log-derivatives of the densities)

3 no closed forms for central sequences (in the LAN framework) ...
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Introduction : stable distributions

Statistical inference : Who’s afraid of heavy tails ?

A very rich literature exists on algorithmic methods trying to palliate the lack of
explicit forms. That literature, it seems, remains largely underexploited by
practitioners.

However,
• specifying or estimating the tail parameter α reamins difficult/risky
• assuming that appropriate “stable-likelihood-based" procedures can be worked
out, they are likely to be sensitive to violations of the stability assumption : while
traditional Gaussian methods notoriously break down under stable densities and
infinite variances, the converse is likely to hold as well : stable likelihood-based
(stable quasi-likelihood) methods are likely to run into problems under non-stable
conditions.
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Introduction : stable distributions

Rank-based inference/Rank tests and R-estimation

Rank-based methods, thanks to distribution-freeness, appear as a simple and quite
natural alternative to stable quasi-likelihood procedures.

Moreover, as we shall see, rank-based methods (in the context of linear models)
achieve parametric efficiency at stable reference densities.

Surprisingly, ranks seldom (never ?) have been considered in the stable context.
Several delicate questions indeed remain open.

Under stable densities or stable noise,

1 which rank tests/R-estimators should we use ?

2 what are the performances of those tests ?/ the asymptotic variances of those
estimators ?

3 feasability ? (computational problems in relation with the absence of explicit
densities/scores ... )

Those are the issues we plan to investigate here in the familiar context of linear
regression.
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Linear models with stable noise
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Linear models with stable noise

Hypothesis testing in linear models with stable noise

Denote by H(n)
f (βββ) the hypothesis under which the vector of observations

(X
(n)
1 , . . . , X

(n)
n )′ satisfies the equation

X
(n)
i = a +

K∑

l=1

c
(n)
il βl + ε

(n)
i , i = 1, . . . , n,

where

- c
(n)
i :=

(
c

(n)
i1 , . . . , c

(n)
iK

)′
are regression constants, satisfying the usual conditions ;

- the intercept a is a nuisance, the regression parameter βββ = (β1, . . . , βK )′ is the
parameter of interest ;

- a + ε
(n)
i , i = 1, . . . , n is a sequence of i.i.d. random variables with density f .
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Linear models with stable noise

Under H(n)
f (βββ), the residuals Z

(n)
i (βββ) = X

(n)
i −∑K

k=1 c
(n)
ik βk (i = 1, . . . , n) then

are i.i.d. with density f .

(i) If the errors are Gaussian, optimal testing procedures are well-known :
optimal tests are based on the Student statistic Tn, which is asymptotically
standard normal ; OLS estimators are optimal.

(ii) If the errors are non-normal α-stable, the optimal testing/estimation problem
is a non-standard one, but LAN, as we shall see, in principle, provides
asymptotically optimal solutions.

We concentrate on testing null hypotheses of the form βββ = βββ0, but linear
restrictions on βββ could be considered as well, leading to the same efficiency
conclusions and comments.
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Linear models with stable noise

ULAN for general linear model with stable errors

The main theoretical tools throughout are Local Asymptotic Normality (LAN,
actually ULAN) and Le Cam’s third Lemma.

Let c̄
(n)
k := n−1

∑n

i=1 c
(n)
ik , c

(n)
i := (c

(n)
i1 , . . . , c

(n)
iK )′, C(n) := n−1

∑n

i=1 c
(n)
i c

(n)
i

′

,

and K
(n) :=

(
C

(n)
)−1/2

.

Assumption (A1) For all n ∈ N, C
(n) is positive definite and converges, as n → ∞,

to a positive definite K−2.

Assumption (A2) (Noether conditions) For all k = 1, . . . , K , one has

lim
n→∞

[
max

1≤t≤n

(
c

(n)
tk − c̄

(n)
k

)2/ n∑

t=1

(
c

(n)
tk − c̄

(n)
k

)2

]
= 0.
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Linear models with stable noise

Denote by P
(n)
θθθ,βββ the probability distribution of X(n) under parameter values θθθ

and βββ. Let

Z
(n)
i (βββ) := X

(n)
i −

K∑

k=1

c
(n)
ik βk (i = 1, . . . , n), i = 1, . . . , n

be the residual associated with βββ. Under P
(n)
θθθ,βββ , the residuals Z

(n)
i (βββ) coincide with

a + ε
(n)
i : they are i.i.d. with density fθθθ = f(α,b,c,a).

The following then holds.
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Linear models with stable noise

Theorem

(ULAN) Suppose that (A1) and (A2) hold. Let ννν(n) := n− 1
2 K(n) and fix

θθθ = (α, b, c , a) ∈ ΘΘΘ. Then, the regression model with stable errors is ULAN

w.r.t. βββ. More precisely, for all βββ ∈ RK , all sequence βββ(n) such that
ννν−1(n)(βββ(n) − βββ) = O(1) and all bounded sequence τττ (n) ∈ RK ,

(i) Λ
(n)

θθθ,βββ(n)+ννν(n)τττ (n)
:= log

dP
(n)

θθθ,a,βββ(n)+ννν(n)τττ (n)

dP
(n)

θθθ,a,βββ(n)

=
∑n

t=1 log

[
fθθθ

“
Z

(n)
t (βββ+ννν(n)τττ (n))

”

fθθθ

“
Z

(n)
t (βββ)

”
]

= τττ (n)′∆∆∆
(n)
θθθ (βββ(n)) − 1

2
I(θθθ)τττ (n)′τττ (n) + oP(1)

under H(n)
θθθ (βββ) as n → ∞, where, setting ϕθθθ(·) := −ḟθθθ(·)/fθθθ(·),

I(θθθ) :=

∫ ∞

−∞

ϕ2
θθθ(x)fθθθ(x)dx

(I(θθθ)I is the information matrix) and

(ii) ∆∆∆
(n)
θθθ (βββ) = n−1/2

(
K

(n)
)′ n∑

i=1

ϕθθθ

(
Z

(n)
i (βββ)

)
c
(n)
i

L→ N (0, I(θθθ)I) (2.1)

(∆∆∆
(n)
θθθ (βββ) a central sequence).
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Linear models with stable noise

Benefits of ULAN

Consequences of ULAN

ULAN allows us to

1 build optimal “parametric" and rank-based tests for H(n)
fθθθ

(βββ)

– the validity of the “parametric" tests requires correct specification of fθ,
and/or root-n-consistent estimation of θθθ, while

– the validity of rank-based tests does not depend on the underlying distribution ;
this includes, of course, the stable ones, and θθθ thus needs not be estimated ;

2 (via Le Cam’s “third Lemma") compute the asymptotic local powers of these
(and any other) tests (now, as a function of the actual f , hence, in the stable
case, a function of θθθ) ;

3 compare these tests through AREs ;

4 perform (one-step) R-estimation, with the same ARE values as the
corresponding rank tests.
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Rank tests
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Rank tests

Rank tests

Consider a target or reference distribution g at which LAN also holds, with central
sequence

∆∆∆(n)
g (βββ) = n− 1

2

(
K

(n)
)′ n∑

i=1

ϕg

(
Z

(n)
i (βββ)

)
c
(n)
i ;

define the “rank based central sequence”

∆∆∆
˜

(n)

J
(βββ) = n− 1

2

(
K

(n)
)′ n∑

i=1

J

(
R

(n)
i

n + 1

)
c
(n)
i ,

where

(i) J : (0, 1) 7→ R : x → ϕg (G−1(x)),

(ii) R(n) = R(n)(βββ0) = (R
(n)
1 , . . . , R

(n)
n ) is the vector of ranks of the residuals

Z
(n)
1 (βββ0), . . . , Z

(n)
n (βββ0).
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Rank tests

Rank-based tests

Proposition

Set

T
(n)
J (βββ0) = J −1(J)

(
∆∆∆
˜

(n)

J
(βββ0)

)′ (
∆∆∆
˜

(n)

J
(βββ0)

)

Then T
(n)
J (βββ0) is

- asymptotically chi-square under
⋃

θθθ∈ΘΘΘ0
H(n)

θθθ (βββ0),

- asymptotically chi-square under
⋃

θθθ∈ΘΘΘ0
H(n)

θθθ (βββ0 + n−1/2τττ ) with non-centrality
parameter

τττ ′τττJ 2(J, θθθ)

J (J)
,

with J (J, θθθ) =
∫ 1

0
J(u)ϕθθθ(F

−1
θθθ (u))du and J (J) =

∫ 1

0
J2(u)du.
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Rank tests

Tests and AREs

The corresponding tests (at nominal asymptotic level α) consist in rejecting the

null hypothesis
⋃

θθθ∈ΘΘΘ0
H(n)

θθθ (βββ0) whenever T
(n)
J (βββ0) exceeds the α-upper quantile

of the (central) chi-square distribution with K degrees of freedom.

Let J and J̃ be two score-generating functions, and denote by AREθθθ

(
J/J̃

)
the

asymptotic relative efficiency, under stable density fθθθ, of the rank test based on

T
(n)
J (βββ0) with respect to the rank test based on T̃

(n)

J̃
(βββ0). Then,

AREθθθ

(
J/J̃

)
=

J 2(J, θθθ)

J 2(J̃ , θθθ)

J (J̃ )

J (J)
.
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Rank tests

Standard tests ...

Standard tests

We applied those results to the following standard tests :

1 van der Waerden scores :

J(u) = Φ−1(u),

2 Wilcoxon scores :

J(u) =
π√
3
(2u − 1),

3 Laplace scores :
J(u) =

√
2sign(F−1(u)),

with F (·) cdf of standardized double-exponential.
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Rank tests

and less standard ones ...

new rank tests based on “stable scores"

... but also to some non standard tests, based on stable scores :

1 Cauchy scores :
J(u) = sin(2π(u − 1/2)),

2 Lévy scores :

J(u) =
√

2
(
Φ−1((u + 1)/2)

)2
(3 − 2

√
2
(
Φ−1((u + 1)/2

)2
),

3 general stable scores : J(u) = ϕf (F
−1(u)).
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Rank tests

Remarks on AREs

Recall that

Theorem (Chernoff-Savage, 1958)

inf
g

AREg (vdW /Student) = 1

Theorem (Hodges-Lehmann, 1956)

inf
g

AREg (W /Student) = 0.864

In the present context, however, since Student tests are not valid, we rather take
the van der Waerden tests (which uniformly dominate the Student ones) as a
reference for ARE computations.
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Rank tests

AREs : Wilcoxon, Laplace, Cauchy vs van der Waerden

Figure: AREs of Wilcoxon, Laplace and Cauchy with respect to van der Waerden as
functions of the tail index α, for various values of the skewness parameter b.
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Rank tests

A remark on AREs

Theorem

sup
g

AREg (W /vdW ) =
6

π
≈ 1.910

where the supremum is taken over all g with finite Fisher information for location
(which includes stable densities).

The supremum is attained by the limiting version of symmetric heavy tailed laws
with infinitely fat tails, e.g. α-stables with α → 0 or Student tn with n → 0.
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Rank tests

AREs : Optimal stable vs van der Waerden

α =1.6 α =1.7 α =1.8 α =1.9
|b| 0 0.2 0.4 0 0.2 0.4 0 0.2 0.4 0 0.2 0.4

α =1.6
0 1.2127 1.2045 1.1787 1.1332 1.1269 1.1075 1.0446 1.0407 1.0288 0.9444 0.9429 0.9386
0.2 1.2043 1.2129 1.2039 1.1277 1.1333 1.1256 1.0416 1.0447 1.0396 0.9433 0.9445 0.9428
0.4 1.1779 1.2033 1.2135 1.1100 1.12811 1.1337 1.0320 1.0425 1.0450 0.9396 0.9438 0.9450

α = 1.7
0 1.2010 1.1954 1.1772 1.1442 1.1394 1.1241 1.0756 1.0721 1.0615 0.9893 0.9879 0.9834
0.2 1.1942 1.2011 1.1962 1.1393 1.1444 1.1392 1.0727 1.0757 1.0714 0.9882 0.9894 0.9876
0.4 1.1731 1.1925 1.2017 1.1236 1.1387 1.1448 1.0631 1.0730 1.0759 0.9845 0.9886 0.9897

α =1.8
0 1.1645 1.1614 1.1511 1.1313 1.1284 1.1188 1.0878 1.0852 1.0771 1.0240 1.0226 1.0182
0.2 1.1600 1.1647 1.1628 1.1276 1.1315 1.1291 1.0852 1.0879 1.0852 1.0228 1.0240 1.0222
0.4 1.1465 1.1587 1.1654 1.1161 1.1267 1.1319 1.0767 1.0849 1.0881 1.0190 1.0231 1.0242

α = 1.9
0 1.1005 1.0994 1.0957 1.0878 1.0867 1.0831 1.0704 1.0693 1.0656 1.0405 1.0394 1.0361
0.2 1.0988 1.1008 1.1006 1.0862 1.0880 1.0876 1.0689 1.0706 1.0698 1.0394 1.0405 1.0394
0.4 1.0937 1.0988 1.1019 1.0813 1.0860 1.0887 1.0643 1.0686 1.0709 1.0360 1.0393 1.0406

Table: AREs for tests based on stable scores with respect to van der Waerden’s. Rows
correspond to scores, columns to the (stable) densities under which AREs are computed.
For instance, row 1 contains the AREs with respect to van der Waerden of the test based
on stable scores for α = 1.6, b = 0, under stable densities with tail parameter α = 1.6
and skewness b ranging from 0 through 0.4.
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Rank tests

Monte Carlo ...

We generated N = 2500 samples from the regression models

Y
(l)
i = ((l/20))ci + ǫi , i = 1, . . . , n = 100, l = 0, 1, 2, 3, (3.2)

where the the ǫi ’s are i.i.d. with centered alpha-stable distribution. The regression
constants ci (i = 1, . . . , 100) (the same ones across the 2500 replications) were
drawn from the uniform distribution on [−5, 5].

Observations Y
(0)
i thus are generated under the null, Y

(1)
i , Y

(2)
i and Y

(3)
i under

increasing alternatives of the form β = l/20, l = 1, 2 and 3.

We performed the various tests at nominal level 5% for the null hypothesis β = 0.

Critical values were computed from asymptotic distributions.
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Rank tests

density l density l
test 0 1 2 3 0 1 2 3

φvdW .0416 .1728 .3968 .5824 .0420 .2324 .6116 .8728
φW .0488 .2600 .5712 .7724 .0484 .3176 .7700 .9564
φL α = .5 .0500 .5992 .9032 .9780 α = .85 .0476 .4600 .9084 .9908
φC β = 0 .0496 .5304 .8576 .9500 β = 0 .0472 .4304 .8744 .9740

φ1.6;0 .0532 .2916 .6180 .8120 .0516 .3568 .8224 .9720
φt .0164 .0244 .0240 .0204 .0288 .0344 .0516 .0872

φvdW .0416 .2004 .4204 .6164 .0408 .2484 .6452 .8836
φW .0500 .2784 .5784 .7752 .0428 .3388 .7752 .9580
φL α = .5 .0484 .3236 .6980 .8812 α = .85 .0472 .3520 .8136 .9716
φC β = .4 .0480 .1856 .3956 .5480 β = .4 .0492 .1932 .5124 .7632

φ1.6;0 .0508 .3124 .6444 .8244 .0476 .3744 .8300 .9772
φt .0196 .0224 .0196 .0212 .0360 .0420 .0528 .0764

φvdW .0396 .3472 .6668 .8176 .0424 .3488 .8020 .9604
φW .0448 .2732 .5992 .7684 .0476 .3216 .7748 .9524
φL α = .5 .0448 .1028 .2224 .4036 α = .85 0496 .1784 .5248 .8188
φC β = .99 .0420 .1880 .2120 .1776 β = .99 .0480 .0500 .0544 .0780

φ1.6;0 .0428 .2280 .5396 .7336 .0488 .2884 .7444 .9452
φt .0136 .0224 .0192 .0252 .0328 .0376 .0424 .0688

Table: Rejection frequencies (out of 2, 500 replications), under the null (l = 0) and under
alternatives (l = 1, 2, 3), of the van der Waerden test φvdW , the Wilcoxon test φW , the
Laplace test (the sign test) φL, the Cauchy test φC, the test φ1.6;/0 (optimal at the
stable distribution with α = 1.6 and β = 0) and the Student test φt . Underlying stable
densities with α = .5 and .85 .
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Rank tests

density l density l
test 0 1 2 3 0 1 2 3

φvdW .0424 .3964 .9208 .9968 .0340 .4488 .9556 .9996
φW .0512 .4580 .9540 .9992 .0416 .4848 .9660 .9996
φL α = 1.6 .0516 .3724 .9004 .9972 α = 1.8 .0428 .3740 .9028 .9984
φC β = 0 .0488 .2788 .7400 .9624 β = 0 .0440 .2392 .7044 .9520

φ1.6;0 .0580 .4864 .9624 .9996 .0432 .4880 .9680 .9996
φt .0436 .2700 .6948 .8700 .0468 .4052 .8720 .9692

φvdW .0396 .3972 .9208 .9988 .0364 .4436 .9600 1.000
φW .0440 .4512 .9548 1.000 .0444 .4860 .9724 1.000
φL α = 1.6 .0492 .3568 .8952 .9956 α = 1.8 .0508 .3832 .9024 1.000
φC β = .4 .0552 .2164 .6476 .9228 β = .4 .0536 .2120 .6616 .9312

φ1.6;0 .0460 .4676 .9628 1.000 .0468 .4944 .9752 1.000
φt .0464 .2836 .6848 .8748 .0468 .4064 .8844 .9664

φvdW .0392 .4404 .9504 .9992 .0372 .4408 .9728 1.000
φW .0492 .4584 .9532 .9992 .0400 .4624 .9768 1.000
φL α = 1.6 .0524 .3332 .8684 .9948 α = 1.8 .0480 .3440 .8976 .9976
φC β = .99 .0500 .1352 .4172 .7512 β = .99 .0464 .1736 .5440 .8708

φ1.6;0 .0552 .4392 .9472 .9988 .0408 .4608 .9676 1.000
φt .0440 .2824 .7120 .8664 .0496 .3916 .8800 .9696

Table: Rejection frequencies (out of 2, 500 replications), under the null (l = 0) and under
alternatives (l = 1, 2, 3), of the van der Waerden test φvdW , the Wilcoxon test φW , the
Laplace test (the sign test) φL, the Cauchy test φC, the test φ1.6;/0 (optimal at the
stable distribution with α = 1.6 and β = 0) and the Student test φt . Underlying stable
densities with α = 1.6 and 1.8 .
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Figure: Power curves of the van der Waerden (solid line) and Student (dotted line) tests computed from 10,000 replications

for various symmetric stable errors. Sample size is n = 100 and regression constants are drawn from the uniform distribution
on [−5, 5].
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Structure

1 Introduction : stable distributions

2 Linear models with stable noise

3 Rank tests

4 R-estimation
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R-estimation

Classical estimation methods in the presence of heavy tails fail to provide satisfactory
solutions.

(a) OLS estimators : consistency rate depends on the tail index α (Samorodnitsky et
al. 2007) ; that rate is strictly less than the optimal root-n rate.

(b) Stable MLEs : problem of the absence of closed form likelihoods and the
information matrix, moreover, is not block-diagonal.

(c) Linear unbiased estimators : consistency rates again crucially depend on α and are
strictly less than the optimal root-n ones ; asymptotic covariances depend on α as
well.

(d) LAD (Least Absolute Deviations) estimators : achieve rate-optimal consistency at
arbitrary stable densities. But LAD estimators are optimal under (light-tailed)
double-exponential noise, and cannot be efficient under any heavy-tailed stable
densities.

Alternative : estimation based on ranks !
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Hodges-Lehmann R-estimation

Estimation methods based on ranks—in short, R-estimation—go back to Hodges and
Lehmann (1963) (one-sample and two-sample location models, based on the Wilcoxon
and van der Waerden (signed) rank statistic) ; extension to regression was made possible
by Jurečková (1971) and Koul (1971)

Under classical Argmin form, the Hodges-Lehmann R-estimator βββ
e

(n)
HL

of βββ is defined as

βββ
e

(n)
HL

:= argmin
t∈RK |Q

e

(n)(R(n)(t))|,

where Q
e

(n)(R(n)(βββ)) is a (signed)-rank test statistic for the H0 : βββ = βββ (two-sided test).
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R-estimation

Main advantages of βββ
e

(n)
HL

over usual M-estimators (under parameter value βββ and error

density f , and standard root-n consistency conditions) :

• n1/2( βββ
e

(n)
HL

− βββ) is asymptotically equivalent to a function which depends on the

unknown actual density f but is measurable with respect to the ranks R
(n)(βββ) of the

unobservable noise (∼ “equivariance" under monotone continuous transformations
of the errors)

• the asymptotic relative efficiencies (AREs) of the R-estimator βββ
e

(n)
HL

with respect to

other R-estimators, or with respect to its Gaussian competitor (OLS or Gaussian
MLE, when root-n consistent) are the same as the AREs of the corresponding rank
tests with respect to their Gaussian competitors
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Main advantages of βββ
e

(n)
HL

over usual M-estimators (under parameter value βββ and error

density f , and standard root-n consistency conditions) :

• n1/2( βββ
e

(n)
HL

− βββ) is asymptotically equivalent to a function which depends on the

unknown actual density f but is measurable with respect to the ranks R
(n)(βββ) of the

unobservable noise (∼ “equivariance" under monotone continuous transformations
of the errors)

• the asymptotic relative efficiencies (AREs) of the R-estimator βββ
e

(n)
HL

with respect to

other R-estimators, or with respect to its Gaussian competitor (OLS or Gaussian
MLE, when root-n consistent) are the same as the AREs of the corresponding rank
tests with respect to their Gaussian competitors

Main disadvantage of ϑϑϑ
e

(n)
HL

in the regression context

• the Argmin becomes rapidly impractical as the dimension of βββ increases
(optimization over a K -dimensional grid)

• even for small K , a grid method involving stable scores is computationally infeasible
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One-step R-estimators.

We therefore rather recommend a linearized form of the definition of the form

“preliminary root-n consistent” + rank based improvement.

Here the preliminary root-n consistent estimator will be the LAD estimator (â
(n)
LAD, β̂ββ

(n)′
LAD

)′

of (a,βββ′)′, obtained by minimizing the L1-objective function

(â
(n)
LAD, β̂ββ

(n)′
LAD

)′ := argmin(a,βββ)∈RK+1

n
X

i=1

|Z
(n)
i (βββ)|.

For the rank-based improvement, consider (again)

∆∆∆
e

(n)

J
(βββ) := n− 1

2 K
(n)′

n
X

i=1

J

 

R
(n)
i

n + 1

!

c
(n)
i , (4.3)

which satisfies an asymptotic linearity property

∆∆∆
e

(n)
J (βββ + ννν(n)τττ (n)) − ∆∆∆

e

(n)
J (βββ) = −J (J, g)τττ (n) + oP(1).
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In principle, the one-step R-estimator of βββ should then take the very simple form

β̃ββ
e

(n)
J := β̂ββ

(n)
LAD

+ ννν(n)J−1(J, g) ∆∆∆
e

(n)

J
(β̂ββ

(n)
LAD

)

From the asymptotic linearity of ∆∆∆
e

(n)

J
, we get ννν−1(n)( β̃ββ

e

(n)
J − βββ) is asymptotically

N (0, (J (J)/J 2(J, g))IK ) under P
(n)
g ,a,βββ.

This in turn implies that ννν−1(n)( β̃ββ
e

(n)
J − βββ), for J(u) = ϕf (F

−1(u)), is asymptotically

N (0,J−1(J)IK ) under P
(n)
f ,a,βββ, i.e.

β̃ββ
e

(n)
J reaches parametric efficiency at correctly specified density f = g .
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R-estimation

Unfortunately, the scalar cross-information quantity J (J, g) is not known.

Thus, β̃ββ
e

(n)
J is not a “genuine" estimator.

That cross-information quantity J (J, g) has to be consistently estimated.

To obtain such a consistent estimator, we adopt here an idea first developed in Hallin,
Oja and Paindaveine (2006) and generalized in Cassart, Hallin and Paindaveine (2010).
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The one-step R-estimator

βββ
e

(n)
J := β̃ββ(n)( bJ−1(J, g)) = β̂ββ

(n)
LAD + ννν(n)

bJ−1(J, g) ∆∆∆
e

(n)

J
(β̂ββ

(n)
LAD)

is such that

• n1/2( βββ
e

(n)
J − βββ) is asymptotically normal with mean zero and covariance matrix

`

J (J)/J 2(J, g)
´

K
2 under P

(n)
g ,a,βββ with g ∈ F

• letting J(u) = ϕf (F
−1(u)), βββ

e

(n)
J achieves the parametric efficiency bound under P

(n)
f ,a,βββ

• the asymptotic relative efficiences of R-estimators clearly coincide with those of the
corresponding rank tests
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Table: AREs of R-estimators with respect to LAD estimators

Estimators Underlying stable density

α = 2 ; b = 0 α = 1.8 ; b = 0 α = 1.8 ; b = 0.5 α = 0.5 ; b = 0.5

βββ
e

(n)

JW
/β̂ββ

(n)

LAD
1.4999 1.3888 1.3984 1.7776

βββ
e

(n)

JvdW

/β̂ββ
(n)

LAD 1.5708 1.3056 1.3285 1.251

βββ
e

(n)

JC
/β̂ββ

(n)

LAD
0.6759 0.7880 0.7769 2.007

βββ
e

(n)

J1.8;0
/β̂ββ

(n)

LAD 1.4459 1.4183 1.4222 1.6453

βββ
e

(n)

J1.8;.5

/β̂ββ
(n)

LAD
1.4452 1.3969 1.4459 1.4432

βββ
e

(n)

J.5;.5

/β̂ββ
(n)

LAD
0.0925 0.1099 0.1175 21.2364

AREs for R-estimators based on various scores with respect to the LAD estimator. Columns
correspond to the (stable) densities under which AREs are computed, rows to the scores
considered : Wilcoxon (JW), van der Waerden (JvdW), Cauchy (JC), and three (δ =
0, γ = 1) stable scores (Jα;b) ; recall that the R-estimator based on Laplace scores
asymptotically coincides with the LAD estimator.

M. Hallin (ULB) R-Estimation in Linear Models with α-stable ErrorsLondon, December 11, 2015 40 / 48



R-estimation

0.5 1.0 1.5 2.0

0
1

2
3

4

Wilcoxon/LAD

!

A
R
E

 b=0 

 b=0.2   

 b=0.4 

 b=0.6 

 b=0.8 

0.5 1.0 1.5 2.0

0
1

2
3

4

Cauchy/LAD

!

A
R
E

0.5 1.0 1.5 2.0

0
1

2
3

4

VdW/LAD

!

A
R
E

Figure: AREs of R-estimators based on Wilcoxon, Cauchy and van der Waerden scores,
with respect to the LAD estimator, as a function of α and for various values of b.
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Figure: AREs under stable distributions of R-estimators based on various stable scores
with respect to the LAD estimator, as a functions of α and b.
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We generated M = 1000 samples from two multiple regression models,

Y
(1)
i = ci1 + ci2 + ǫi , i = 1, . . . , n = 100, (4.4)

with two regressors, and

Y
(2)
i = ci1 + ci2 + ci3 + ci4 + ǫi , i = 1, . . . , n = 100, (4.5)

with four regressors, both with alpha-stable i.i.d. ǫi ’s. The regression constants cij (the
same ones across the 1000 replications) were drawn (independently) from the uniform
distribution on [−1, 1]2 and [−1, 1]4, respectively. Letting 1K := (1, 1, . . . , 1) ∈ R

K , the
true values of the regression parameters are thus βββ = 12 in model (4.4) and βββ = 14 in
model (4.5).
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Table: Empirical bias and MSE for various estimators of βββ in (4.4) (2 regressors)

Estimator Underlying stable density (α/b)

α = 2/b = 0 α = 1.8/b = 0 α = 1.8/b = 0.5 α = 1.2/b = 0 α = 1.2/b = 0.5

β̂ββ
(n)
LS

(Bias) .00193 -.00134 .01385 .18680. -.19255

(MSE) .06770 .19459 .27336 124.46 88.070

β̂ββ
(n)
LAD

(Bias) .00167 -.00087. .00502 .02995 .00646

(MSE) .10674 .10411 .11638 .11560 .13396

βββ

e
(n)
JvdW

(Bias) .00256 -.00136 .00694 .03376. -.00243
(MSE) .06878 .07694. .08545 .15165. .14499

βββ

e
(n)
JW

(Bias) .00076 .00015 .00920 .02957 -.00147
(MSE) .07234 .07454 .08366 .12060 .12219

βββ

e
(n)
JL

(Bias) .00167 -.00087 .00502 .02995 .00646
(MSE) .10674 .10411. .11638 .11560 .13396

βββ

e
(n)
J
1.8/0

(Bias) .00250 .00063 .00883 .03046 .00068

(MSE) .07088 .07457. .08310 .12976. .12820

βββ

e
(n)
J
1.8/.5

(Bias) .00187 -.00119 .01057 .03284 -.00037

(MSE) .07104 .07683 .08139 .13562 .12398

βββ

e
(n)
J
1.2/0

(Bias) .00424 .00353 .01373 .02155 -.00363

(MSE) .11613 .09812 .11040 .09641 .10971

βββ

e
(n)
J
1.2/.5

(Bias) .00670 -.00418 .01609 .02735 .00310

(MSE) .11416 .10382 .10822 .11455 .08917

βββ

e
(n)
J.5/.5

(Bias) .01070 .03350 .00357 .04768 -.01671

(MSE) .22575 .28311 .24386 .35926 .18999

βββ

e
(n)

HL ; vdW
(Bias) -.01668 -.01040 -.00253 .04306 -.01664
(MSE) .07936 .08958 .09508 .20227 .20441

βββ

e
(n)
HL ; W

(Bias) -.00672 -.02019 -.01113 -.01052 -.03408
(MSE) .08225 .09071 .09702 .16290 .14918

βββ

e
(n)

HL ; 1.8/0
(Bias) -.02274 -.02834 -.01923 -.01504 -.05129
(MSE) .09066 .10291 .10488 .18247 .19072

Empirical bias and MSE of the LSE β̂ββ
(n)
LS

, the LAD β̂ββ
(n)
LAD

and various rank-based estimators computed from 1000 replications

of model (4.4) with sample size n=100, under various stable error distributions.
M. Hallin (ULB) R-Estimation in Linear Models with α-stable ErrorsLondon, December 11, 2015 44 / 48



R-estimation

Table: Empirical bias and MSE for various estimators of βββ in model (4.5) (4 regressors)

Estimator Underlying stable density (α/b)

α = 2/b = 0 α = 1.8/b = 0 α = 1.8/b = 0.5 α = 1.2/b = 0 α = 1.2/b = 0.5

β̂ββ
(n)
LS

(Bias) .00314 .01367 -.01945 -4.09468 -.09272

(MSE) .06339 .30161 .12752 15818.91 39.45292

β̂ββ
(n)
LAD

(Bias) .00693 .00880 -.00774 -.00652 .00352

(MSE) .09995 .09992 .09548 .08495 .09984

βββ

e
(n)
JvdW

(Bias) .00378 .00638 -.01177 -.00763 -.01262
(MSE) .06463 .06964 .07238 .11369 .11015

βββ

e
(n)
JW

(Bias) .00542 .00579 -.01236 -.00624 -.00774
(MSE) .06811 .06847 .06988 .09038 .09127

βββ

e
(n)
JL

(Bias) .00693 .00880 -.00774 -.00652 .00352
(MSE) .09995 .09992 .09548 .08495 .09984

βββ

e
(n)
J
1.8/0

(Bias) .00499 .00531 -.01221 -.00445 -.00980

(MSE) .06755 .06735 .07021 .09908 .09562

βββ

e
(n)
J
1.8/.5

(Bias) .00339 .00526 -.01109 -.00438 -.01151

(MSE) .06686 .06914 .06977 .10095 .09397

βββ

e
(n)
J
1.2/0

(Bias) .00802 .00608 -.01297 .00682 .00404

(MSE) .10763 .09229 .08986 .07061 .08406

βββ

e
(n)
J
1.2/.5

(Bias) .00291 .00024 -.01401 .00396 -.00231

(MSE) .10332 .09233 .08567 .09036 .07037

βββ

e
(n)
J.5/.5

(Bias) .03400 .03653 -.02823 -.05925 -.00469

(MSE) .30150 .35030 .28818 .43049 .18807

βββ

e
(n)

HL ; vdW
(Bias) .00401 .00634 -.01208 -.00704 -.01234
(MSE) .06513 .06968 .07266 .11310 .10956

βββ

e
(n)
HL ; W

(Bias) .00513 .00623 -.01285 -.00547 -.00755
(MSE) .06854 .06855 .07006 .09010 0.09100

βββ

e
(n)

HL ; 1.8/0
(Bias) .00494 .00582 -.01245 -.00396 -.01081
(MSE) .06783 .06753 .07037 .09854 .09594

Empirical bias and MSE of the LSE β̂ββ
(n)
LS

, the LAD β̂ββ
(n)
LAD

and various rank-based estimators computed from 1000 replications

of model (4.5) with sample size n=100, under various stable error distributions.
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Table: One-step R-estimation versus Argmin

Estimator Underlying stable density (α/b)

α = 2/b = 0 α = 1.8/b = 0 α = 1.8/b = 0.5 α = 1.2/b = 0 α = 1.2/b = 0.5 α = 0.5/b =
K = 6

βββ

e
(n)
JvdW

(Bias) -.01991 -.00485 .01084 -.01890 .02246 .00162

(MSE) .07707 .08821 .08935 .16485 .15258 .61554

βββ

e
(n)

HL ; vdW
(Bias) -.19519 -.19834 -.19202 -.36809 -.30435 -.59222

(MSE) .24257 .27483 .27461 .58981 .52245 2.51344

K = 10

βββ

e
(n)
JvdW

(Bias) -.00877 .00607 .00187 -.00807 -.01376 .06003

(MSE) .07834 .09133 .08641 .16835 .15545 1.4346

βββ

e
(n)

HL ; vdW
(Bias) -.91080 -.89626 -.92196 -1.00979 -.99976 -.97662

(MSE) 1.04321 1.07289 1.09949 1.50269 1.43327 3.23870

K = 15

βββ

e
(n)
JvdW

(Bias) -.00374 -.01421 -.00575 .02479 0.00271 .01123

(MSE) .08894 .10969 .10539 .20918 .19621 2.00335

βββ

e
(n)

HL ; vdW
(Bias) -1.07573 -1.11915 -1.11057 -1.23107 -1.21492 -1.31910

(MSE) 1.19685 1.33319 1.32890 1.91879 1.88120 4.32374

Empirical bias and MSE of the one-step and Argmin versions βββ

e
(n)
JvdW

and βββ

e
(n)

HL ; vdW
of the van der Waerden R-estimator

computed (via the Nelder-Mead (1965) algorithm for the Hodges-Lehmann case) from 1000 replications of model (4.5) with
K = 6, 10, 15, sample size n=100 and various stable error distributions.
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Conclusions

1 contrary to common belief, regression experiments with stable errors are LAN, with
traditional root-n rate ;

2 traditional testing/estimation methods, however, as a rule, are rate-suboptimal in
the presence of stable errors

3 One exception is the LAD estimator, along with the related median-test or Laplace
score tests which are rate-optimal—but far from efficient

4 Rank-based methods allow for testing and estimation methods that remain valid
irrespective of the tail index and skewness parameter ...

5 but can be tuned in order to reach parametric efficiency at given stable distribution

6 ... and, for adequate scores, yield uniformly better performance than LAD estimators
and Laplace score tests over the class of stable densities with α ≥ 1 or α ≤ 1
...

7 Finally, the one-step form of R-estimation significantly outperforms the Argmin
form in finite sample
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