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LAN is a parametric theory, leading to parametrically
efficiency under density f

but the parametrically efficient tests based on Aé’” N
general are not valid under g # f; nor do the
parametrically efficient (one-step) estimators remain v(n)-
(root-n) consistent under g # f
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sSemiparameftric models

So far, we have been dealing with (sequences of)
parametric models, of the form

(n) ._ n n (n) ._ (n)
g .= (X( ) A P = {Po;f

eeRK})

from now on, such parametric models are embedded info
larger models: we assume that the observation X (™ is
generated by

g(n) e (X(n) A(n) P(n) o {Pén)
’ ’ ' 9

GGRK,geF})

where 0 is a finite-dimensional parameter of interest, and
g € F an infinite-dimensional nuisance (here, some
unknown noise or innovation density). Such models are
called semiparametric models



throughout, the fixed-g parametric submodels
e 1= (a0, A P = P9 ¢ RF L)

are assumed to be ULAN, with (parametric) central
segquence Aé”; and (parametric) information matrix I'g. . it

IS also assumed that there exist residuals Zt(”) (@) such that
X(™ ~ Py iff the Z,™(8)s are, for instance, i.i.d., with
density g (other concepts of whifte noise are possible)

)

the fixed-0 submodels

() ._ () ) p) ._ [ pn)
R A R RS U

are nonparametric models indexed by
an’infinite-dimensional parameter” g € F



* parametric efficiency (at f) is defined within the £
submodels, and is entirely characterized by the information
maftrix I'g. : This matrix defines the noncentrality parameters
iNn the power of parametrically optimal (af f) tests; its
inverse is also the asymptotic covariance matrix of the
parametrically optimal (at f) estimators of

* however, the implementation of parametrically efficient
procedures was based on the fact that, under the
parametric local experiments of £ }m,

Aé?} £> N(Fg;fT, Pg;f) T € RK;
which does not hold under the semiparametric local

experiments of £ anymore

° in particular, Aé?} £, N (To.¢7, Ty.¢) in general is not true
anymore under Pé?v(n>7,g, g7 f



fhe cost of going semiparametric

hence, parametrically efficient procedures, as a rule, are no
longer valid, and parametric efficiency cannot e reached, in
the semiparametric model: the fact of not knowing g in general
has a cost

Can we characterize that cost?



parametric nuisances

Recall that, in case 0 splits into a parameter of inferest §; and a
(parametric) nuisance 6-,

optimal (efficient) inference on 6, can be based on the
residual A&”)L = A" — T LT AM; of the regression of the
6:-part A{" of the central sequence Ay” = (A, AyY')
with respect fo the 8,-part A", with (under Pé@v(n)(ﬂmé),)

n 1 1 1 1 _
AT 5 N (P117‘17 F11) : Iy, =T — Tl Ty

the matrix I' oI5, T, is the (asymptotic) information loss due
to nonspecification of 0,

this regression actually is projecting A@ onto the L, space
orthogonal to Aé”), thus neutralizing the impact of a local
perturbation of 6,



fangents

Here the nuisance g ranges over an infinite-dimensional space F;
but this space F contains parametric subspaces. Consider
“paths” ¢ :=n — q(n) € F, wheren c (—1,1)%, ¢(0) = g, such that
the parametric model

£l = (X< ) AM pm . (pl (n)})

be LAN at (8’,0") with respect to (8’,n'), with central sequence

( b9 ) and information maftrix ( %9 4939 ) (n here

Hf;nb) g CCI;G;Q FO;g

plays the role of a parametric nuisance)

denote by O the family of all such paths



efficient inference on 8 in that model thus should be based

on the residual of the regression of the #-part Aé?g) of the
central sequence with respect to the n-part Hf:g;g

Agbg)q = Aé?g)_ ;;9;9(P£{59>_1H<(1?¢9); with I\g;g =Ty — C;;O;g

(nggrlcqﬁ;g

which is the projection of Aé?g) onto the L, space
orthogonal to Hg”,}g neutralizing the impact on Aé”; of a
local perturbation g(n=1/27,) of g =: ¢(0) along ¢(n)

Aé?;q £, NI, 71, Ty, ) under pin)

0+v(n)T1;9(n—1/2713);9°



least favorable submodel

* Assume that a g;; exists such that A,S?quf is asymptotically

Lo-orthogonal to Hf}f'fg,g for any ¢: clearly, I‘gl_g would be
mMinimal among all I‘g,g’s, and ¢; would provide the least

favorable local perturbation of g, and Ag';‘;qlf the ‘maximal”
part of the original central sequence insensifive o all such
local perturbations (the collection of which is called the
fangent space)

* semiparametric efficiency (at 8 and ¢) is characterized by
the residual information matrix Ty, := Ty’

° in the parametric model &,, this semiparametric efficiency
can be achieved by considering the semiparametrically
efficient centfral sequence

n)* n L * * n
Aé;g) = Aé;g)qlf _>N(P0;971’ P0;9> under Péﬁv(n)fl;q(n‘l/%);g



summing up

semiparametric efficiency (af given f and #) is characterized by
the Gaussian shift model

A" ~ N (Tg,7,Tp.;), T€R™

hence by the semiparametrically efficient (at f) information
maftrix T'y. » (noncentrality parameters for optimal tests;
asymptotic covariance matrices of optimal estimators)

* ifTy.; =To.5: The modelis "adaptive” at f

* ingeneral, Ty, < Ty,s: the cost of not knowing the “true”
density, at f, is strictly positive

°* BUT..



many problems remain unsolved!

how can we construct such least favorable models? how
can we compute Ag")* and T, ;?

assuming that Ag'f}* can be computed, its asymptofic

distribution is known under 5}”), but noft, in general, under

the semiparametric model £ (under Sg(”), g # f.,such
asymptotic disfribufion even may not existl) ... hence,
iInference based on Aé?}* IS valid under density f only

.. inference based on Aé@fn) , where §(") is such that

Agf”g)fn) — Agf”g)* = op(1) at “all” g (nonparametric estimation

¢ of ¢, additional regularity assumptions, slow
convergence, sample splitting, and other nicefies ... ) ...



	 
	Outline 
	Outline 
	Semiparametric models
	
	
	the cost of going semiparametric 
	parametric nuisances 
	tangents
	
	least favorable submodel
	summing up
	

