PARAMETRIC AND SEMIPARAMETRIC EFFICIENCY

Marc Hallin

Université Libre de Bruxelles

London, December 11, 2015

- LAN is a parametric theory, leading to parametrically efficiency under density f
- but the parametrically efficient tests based on $\Delta_{\theta}^{(n)}$ in general are not valid under $g \neq f$; nor do the parametrically efficient (one-step) estimators remain $\nu(n)$ -(root-n) consistent under $g \neq f$

Outline

Parametric and semiparametric efficiency

- 1. Parametric efficiency at f
- ullet 2. Semiparametric efficiency at f

Outline

Parametric and semiparametric efficiency

- 1. Parametric efficiency at f
- \bullet 2. Semiparametric efficiency at f

Semiparametric models

 So far, we have been dealing with (sequences of) parametric models, of the form

$$\mathcal{E}_f^{(n)} := \left(\mathcal{X}^{(n)}, \mathcal{A}^{(n)}, \mathcal{P}_f^{(n)} := \left\{ \left. \mathbf{P}_{\boldsymbol{\theta};f}^{(n)} \right| \boldsymbol{\theta} \in \mathbb{R}^K \right\} \right)$$

• from now on, such parametric models are embedded into larger models: we assume that the observation $\mathbf{X}^{(n)}$ is generated by

$$\mathcal{E}^{(n)} := \left(\mathcal{X}^{(n)}, \mathcal{A}^{(n)}, \mathcal{P}^{(n)} := \left\{ \left. \mathbf{P}_{\boldsymbol{\theta}; g}^{(n)} \right| \boldsymbol{\theta} \in \mathbb{R}^{K}, \ g \in \mathcal{F} \right\} \right)$$

where θ is a finite-dimensional parameter of interest, and $g \in \mathcal{F}$ an infinite-dimensional nuisance (here, some unknown noise or innovation density). Such models are called semiparametric models

throughout, the fixed-g parametric submodels

$$\mathcal{E}_g^{(n)} := \left(\mathcal{X}^{(n)}, \mathcal{A}^{(n)}, \mathcal{P}_g^{(n)} := \left\{ \left. \mathbf{P}_{\boldsymbol{\theta};g}^{(n)} \right| \boldsymbol{\theta} \in \mathbb{R}^K \right\} \right)$$

are assumed to be ULAN, with (parametric) central sequence $\Delta_{\pmb{\theta};g}^{(n)}$, and (parametric) information matrix $\Gamma_{\pmb{\theta};g}$; it is also assumed that there exist *residuals* $Z_t^{(n)}(\pmb{\theta})$ such that $\mathbf{X}^{(n)} \sim \mathrm{P}_{\pmb{\theta};g}^{(n)}$ iff the $Z_t^{(n)}(\pmb{\theta})$'s are, for instance, i.i.d., with density g (other concepts of white noise are possible)

ullet the fixed- $oldsymbol{ heta}$ submodels

$$\mathcal{E}_{\boldsymbol{\theta}}^{(n)} := \left(\mathcal{X}^{(n)}, \mathcal{A}^{(n)}, \mathcal{P}_{\boldsymbol{\theta}}^{(n)} := \left\{ \left. \mathbf{P}_{\boldsymbol{\theta};g}^{(n)} \right| \ g \in \mathcal{F} \right\} \right)$$

are nonparametric models indexed by an "infinite-dimensional parameter" $g \in \mathcal{F}$

- parametric efficiency (at f) is defined within the $\mathcal{E}_f^{(n)}$ submodels, and is entirely characterized by the information matrix $\Gamma_{\theta;f}$: this matrix defines the noncentrality parameters in the power of parametrically optimal (at f) tests; its inverse is also the asymptotic covariance matrix of the parametrically optimal (at f) estimators of θ
- however, the implementation of parametrically efficient procedures was based on the fact that, under the parametric local experiments of $\mathcal{E}_f^{(n)}$,

$$\mathbf{\Delta}_{m{ heta};f}^{(n)} \stackrel{\mathcal{L}}{
ightarrow} \mathcal{N}(\mathbf{\Gamma}_{m{ heta};f}m{ au},\; \mathbf{\Gamma}_{m{ heta};f}) \quad m{ au} \in \mathbb{R}^K;$$

which does not hold under the semiparametric local experiments of $\mathcal{E}^{(n)}$ anymore

• in particular, $\Delta_{\boldsymbol{\theta};f}^{(n)} \stackrel{\mathcal{L}}{\to} \mathcal{N}(\Gamma_{\boldsymbol{\theta};f}\boldsymbol{\tau}, \ \Gamma_{\boldsymbol{\theta};f})$ in general is not true anymore under $P_{\boldsymbol{\theta}+\boldsymbol{\nu}(n)\boldsymbol{\tau}:a'}^{(n)} \ g \neq f$

the cost of going semiparametric

hence, parametrically efficient procedures, as a rule, are no longer valid, and parametric efficiency cannot be reached, in the semiparametric model: the fact of not knowing g in general has a cost

Can we characterize that cost?

parametric nuisances

Recall that, in case θ splits into a parameter of interest θ_1 and a (parametric) nuisance θ_2 ,

• optimal (efficient) inference on $\boldsymbol{\theta}_1$ can be based on the residual $\boldsymbol{\Delta}_1^{(n)^{\perp}}:=\boldsymbol{\Delta}_1^{(n)}-\Gamma_{12}\Gamma_{22}^{-1}\boldsymbol{\Delta}_2^{(n)};$ of the regression of the $\boldsymbol{\theta}_1$ -part $\boldsymbol{\Delta}_1^{(n)}$ of the central sequence $\boldsymbol{\Delta}_{\boldsymbol{\theta}}^{(n)}=(\boldsymbol{\Delta}_{\boldsymbol{\theta};1}^{(n)\prime},\boldsymbol{\Delta}_{\boldsymbol{\theta};2}^{(n)\prime})'$ with respect to the $\boldsymbol{\theta}_2$ -part $\boldsymbol{\Delta}_2^{(n)}$, with (under $P_{\boldsymbol{\theta}+\boldsymbol{\nu}(n)(\boldsymbol{\tau}',1,\boldsymbol{\tau}_2')'}^{(n)}$)

$$oldsymbol{\Delta}_{1}^{(n)^{\perp}} \stackrel{\mathcal{L}}{
ightarrow} \mathcal{N}\left(oldsymbol{\Gamma}_{11}^{\perp}oldsymbol{ au}_{1},\;oldsymbol{\Gamma}_{11}^{\perp}
ight), \qquad oldsymbol{\Gamma}_{11}^{\perp} := oldsymbol{\Gamma}_{11} - oldsymbol{\Gamma}_{12}oldsymbol{\Gamma}_{22}^{-1}oldsymbol{\Gamma}_{12}';$$

- the matrix $\Gamma_{12}\Gamma_{22}^{-1}\Gamma_{12}'$ is the (asymptotic) information loss due to nonspecification of θ_2
- this regression actually is projecting $\Delta_1^{(n)}$ onto the L_2 space orthogonal to $\Delta_2^{(n)}$, thus neutralizing the impact of a local perturbation of θ_2

tangents

Here the nuisance g ranges over an infinite-dimensional space \mathcal{F} ; but this space \mathcal{F} contains parametric subspaces. Consider "paths" $q:=\pmb{\eta}\mapsto q(\pmb{\eta})\in\mathcal{F}$, where $\pmb{\eta}\in(-1,1)^K$, $q(\mathbf{0})=g$, such that the parametric model

$$\mathcal{E}_q^{(n)} := \left(\mathcal{X}^{(n)}, \mathcal{A}^{(n)}, \mathcal{P}_q^{(n)} := \{ P_{\boldsymbol{\theta}, q(\boldsymbol{\eta})}^{(n)} \} \right)$$

be LAN at $({m heta}',{m 0}')$ with respect to $({m heta}',{m \eta}')$, with central sequence

$$\left(\begin{array}{c} \mathbf{\Delta}_{\pmb{\theta};g}^{(n)} \\ \mathbf{H}_{q;\pmb{\theta};g}^{(n)} \end{array}\right) \text{ and information matrix } \left(\begin{array}{cc} \mathbf{\Gamma}_{\pmb{\theta};g} & \mathbf{C}_{q;\pmb{\theta};g}' \\ \mathbf{C}_{q;\pmb{\theta};g} & \mathbf{\Gamma}_{\pmb{\theta};g}^{\mathbf{H}} \end{array}\right) \textbf{ ($\pmb{\eta}$ here}$$

plays the role of a parametric nuisance)

ullet denote by ${\mathcal Q}$ the family of all such paths

• efficient inference on θ in that model thus should be based on the residual of the regression of the θ -part $\Delta_{\theta;g}^{(n)}$ of the central sequence with respect to the η -part $\mathbf{H}_{q;\theta;g}^{(n)}$

$$\boldsymbol{\Delta}_{\boldsymbol{\theta};g}^{(n)q} := \boldsymbol{\Delta}_{\boldsymbol{\theta};g}^{(n)} - \mathbf{C}_{q;\boldsymbol{\theta};g}'(\boldsymbol{\Gamma}_{\boldsymbol{\theta};g}^{\mathbf{H}})^{-1} \mathbf{H}_{q;\boldsymbol{\theta};g}^{(n)} \quad \text{with } \boldsymbol{\Gamma}_{\boldsymbol{\theta};g}^{q} := \boldsymbol{\Gamma}_{\boldsymbol{\theta};g} - \mathbf{C}_{q;\boldsymbol{\theta};g}'(\boldsymbol{\Gamma}_{\boldsymbol{\theta};g}^{\mathbf{H}})^{-1} \mathbf{C}_{q;\boldsymbol{\theta};g}$$

- which is the projection of $\Delta_{{\boldsymbol{\theta}};g}^{(n)}$ onto the L_2 space orthogonal to $\mathbf{H}_{q;{\boldsymbol{\theta}};g}^{(n)}$, neutralizing the impact on $\Delta_{{\boldsymbol{\theta}};g}^{(n)}$ of a local perturbation $q(n^{-1/2}\boldsymbol{\tau}_2)$ of $g=:q(\mathbf{0})$ along $q(\boldsymbol{\eta})$
- $\quad \bullet \quad \Delta_{\boldsymbol{\theta};g}^{(n)q} \xrightarrow{\mathcal{L}} \mathcal{N}(\boldsymbol{\Gamma}_{\boldsymbol{\theta};g}^q \boldsymbol{\tau}_1, \ \boldsymbol{\Gamma}_{\boldsymbol{\theta};g}^q) \quad \text{under } \mathrm{P}_{\boldsymbol{\theta}+\boldsymbol{\nu}(n)\boldsymbol{\tau}_1;q(n^{-1/2}\boldsymbol{\tau}_2);g}^{(n)},$

least favorable submodel

- Assume that a q_{lf} exists such that $\Delta_{\pmb{\theta};g}^{(n)q_{lf}}$ is asymptotically L_2 -orthogonal to $\mathbf{H}_{q;\pmb{\theta};g}^{(n)}$ for any q: clearly, $\Gamma_{\pmb{\theta};g}^{q_{lf}}$ would be minimal among all $\Gamma_{\pmb{\theta};g}^q$'s, and q_{lf} would provide the least favorable local perturbation of g, and $\Delta_{\pmb{\theta};g}^{(n)q_{lf}}$ the 'maximal" part of the original central sequence insensitive to all such local perturbations (the collection of which is called the tangent space)
- semiparametric efficiency (at $\pmb{\theta}$ and g) is characterized by the residual information matrix $\pmb{\Gamma}^*_{\pmb{\theta};g}:=\pmb{\Gamma}^{q_{lf}}_{\pmb{\theta};g}$
- in the parametric model \mathcal{E}_g , this semiparametric efficiency can be achieved by considering the semiparametrically efficient central sequence

$$\boldsymbol{\Delta}_{\pmb{\theta};g}^{(n)*} := \boldsymbol{\Delta}_{\pmb{\theta};g}^{(n)q_{lf}} \xrightarrow{\mathcal{L}} \mathcal{N}(\boldsymbol{\Gamma}_{\pmb{\theta};g}^* \boldsymbol{\tau}_1, \ \boldsymbol{\Gamma}_{\pmb{\theta};g}^*) \quad \text{under } \mathbf{P}_{\pmb{\theta}+\pmb{\nu}(n)\boldsymbol{\tau}_1;q(n^{-1/2}\boldsymbol{\tau}_2);g}^{(n)}$$

summing up

semiparametric efficiency (at given f and θ) is characterized by the Gaussian shift model

$$oldsymbol{\Delta}^* \sim \mathcal{N}\left(oldsymbol{\Gamma}_{oldsymbol{ heta};f}^*oldsymbol{ au}, oldsymbol{\Gamma}_{oldsymbol{ heta};f}^*
ight), \; au \in \mathbb{R}^m$$

hence by the semiparametrically efficient (at f) information matrix $\Gamma_{\theta;f}^*$ (noncentrality parameters for optimal tests; asymptotic covariance matrices of optimal estimators)

- if $\Gamma_{m{ heta};f}^* = \Gamma_{m{ heta};f}$: the model is "adaptive" at f
- in general, $\Gamma_{\theta;f}^* < \Gamma_{\theta;f}$: the cost of not knowing the "true" density, at f, is strictly positive
- BUT ...

many problems remain unsolved!

- how can we construct such least favorable models? how can we compute $\pmb{\Delta}_{\pmb{ heta};f}^{(n)*}$ and $\pmb{\Gamma}_{\pmb{ heta};f}^*$?
- assuming that $\Delta_{\pmb{\theta};f}^{(n)*}$ can be computed, its asymptotic distribution is known under $\mathcal{E}_f^{(n)}$, but not, in general, under the semiparametric model $\mathcal{E}^{(n)}$ (under $\mathcal{E}_g^{(n)}$, $g \neq f$, such asymptotic distribution even may not exist!) ... hence, inference based on $\Delta_{\pmb{\theta};f}^{(n)*}$ is valid under density f only
- ... inference based on $\Delta_{\pmb{\theta};\hat{g}^{(n)}}^{(n)*}$, where $\hat{g}^{(n)}$ is such that $\Delta_{\pmb{\theta};\hat{g}^{(n)}}^{(n)*} \Delta_{\pmb{\theta};g}^{(n)*} = o_{\mathrm{P}}(1)$ at "all" g (nonparametric estimation $\hat{g}^{(n)}$ of g, additional regularity assumptions, slow convergence, sample splitting, and other niceties ...) ...