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local parameters

Denote by £ = (x(™, A Pm) .— {P™ ]9 € ® C R*}) @
seguence of parametric statistical models (statistical
experiments) indexed by 8. For convenience, let © = R*

Consider sequences of parameter values of the form
k
0+v, 7, T€R",

where v,, is a sequence of k£ x k full-rank matrices such that
v, — 0 at some adequate rate:; 7 will be called a local
parameter (localized at 8). More generally, any sequence of
the form

0" =0 +v,r™

where (") is a bounded sequence of R* will be called a local
alternative (to 0)



examples

The matrix v reflects the local rate(s) of asymptoftics in the
experiment. In most “classical” cases, this rate is n!/2, and v is
simply n=1/21

Example 1. In the classical one-sample location model, local
alternatives are of the form (™ = § 4+ n=1/27()

Example 2. In the general linear model with independent
observations Y; = X8 + e, local parameters are of the form
IB(”) — :8 i (Xlx>—1/27.(n)



LAN

In The sequence of experiments
g = (xm Am) p) .— [P |9 c RF}), denote by

dp(n)
(n) L O+v, 1,
A0+vn7n/0 = log ()
0

(n)

the logarithm of the local log-likelihood rafio dP;;'(s)T”
6

(P{™-uniquely defined)

Definition: the sequence £ is LAN (locally asymptotically
normal) if, for all 8, there exist a sequence Aé”) of AW @ By-
-measurable k-dimensional random vectors, and a (k x k) matrix
I's such that, for all bounded r,,, under Pé”), as n — oo,

W AGY, o =Th Ay — L1/ Ter, +0p(1), and

(i) ASY 5 N(0,Ty).



Remarks

* Al is called a central sequence (localized at 6); Ty is the
information matrix .
°* Ay is defined up 1o o, (1) quantities
(]
* LAN does not depend on the version of the log-likelihnood
AyY, . adopted in ()

* more generally, under P\, as n — oo

n 1
(T;zPOTn)_l/z(AéjL)unrn/e + 57‘,’”1‘97'71) £ N(0,1)



ULAN

Actually, for most applications, we require Uniform Local
Asymptotic Normality (ULAN), that is, replacing (i) with the slightly
sfronger condition

* (i") for any local sequence 8™ such that v 1(0™ —8) = O(1)
and all bounded sequence 1,,,

Ngr iy 7 g = Tn Bl = 371 TaTn + op(1), With § — T'(6)

continuous
* moreover, for convenience, we also assume that I'(8) has
full rank &

* then, it is easy to show that ULAN is equivalent o LAN and
asymptotic linearity of the central sequence Aé”), namely,

Al — A = —T(6)r™ +op(1) underPy") asn — o

0+v,, (")



Why “LAN"?

Denote by A the (unique) observation in the k-dimensional
Gaussian location (or Gaussian shift) model

(C/’I'/'\\/’: (Rk,Bk,PI‘ — {P‘T :Nk(I‘T7I‘) ‘T eRk})’

where I' is a specified covariance matrix. Straightforward
calculation yields

dP 1
A A) :=log ——(A) =7'A — =7T
This resemblance with Gaussian location, as we shall see, is not

just a coincidence ...



Examples

(a) the one-sample location model, under which the
observation X™ = (x{™ ... x{") satisfies

XM =94 ger, e iid., with density f,
where f is such that

°* f(x) >0Vx eR,

* Jpxf(z)dr =0,
* f absolutely continuous over finite intfervals, that is, there
exists a function f : R — R such that, Va < b,

f(b) = f(a) = [ f(x)dx, and,
° letting p = —f/f. Iy = [ ¥3(z) f(z)dz < o0

(actually, absolute continuity of f can be weakened into
quadratic mean differentiability of £1/2)



local alternatives are of the form 6 + n=/2r,,, with log-likelihoods

(1) n n _

A(n) 10 dP0+n_1/27'n f _ 10 H’L:1 f(X’L( ) — 9 — N 1/27-’7’L)
O+n—1/21,/0; f & dP(n) S n X(n) 0
0;f Hz‘=1 f( i )

_ Z {logf(Zf")(e) _ n_l/QTn) — logf(Zz-(n)(e))],

with 2™ (6) .= x™ — ¢
This model is ULAN, with central sequence

o) =1/ Z or(ZU(0)) andinformation Ty := Ty := Z;



(b) the general linear model , under which the observation
X = (x" ..., x\") satisfies

X — (MY g4 £l — Z o+, M iid., with density f,

with cE” = ( §1>,... (”>) and B = (f81,...,08k)"; fis assumed to
satisfy the same assumptions as in the location model, and the
regression constants are such that

n

A _ an)y2

T\N ' —\n 1 n
lim max1n< = ((n) —(n)k )’ = 0, with cé ) .— = cz(.k),
e il =6 )? ni=

cm .= L5 " (™) is positive definite for all n, and

zlz 7

(R(™M)~2.=C® — C =: R~2, where C is of full rank.



The parameteris 8 = (54, ..., 0k)’; local alternatives are of the
form B8 + v,,1,,, with

v, =n""?R™ and 1, € RX.

This model is ULAN, with cenfral sequence

where z(8) := X\ — (c\™)'8., and with information matrix
I‘Ig;f = IfIK,



(©) AR(K) models; here the observation X = (x\™ . x{")
safisfies

K
XM =30, X" + e, e iid., with density f.
k=1

with 1 — 377 2% #£ 0 for |z| < 1, z € C (causality or
fundalmentalness); f is assumed to safisfy the same assumptions
as in the location model, with, in addition, 0% := [ 2* f(z)dz < oo,



The parameteris 0 = (64,...,0k)’"; local alternatives are of the
form 6 +v,,7,, withv,, = n=1/2Ix and 7, € RX

This model is ULAN, with central sequence

Xt—l —0 Yu Zt—l—u
» » ( | \_n1/2 , 2.8 (Z g .) \
f - t ;i" (2 |7 ;#)ﬁ( ) :

' \Xt—K) - \Z =0 gu Zt—K—u)

where Z™ (@) := x™ — YK 4, X" and impulse-response

coefficients (the Green’s functions) g, characterized by
—1
(1 -, HkL’f) =: % >, 9. L*. and with information matrix

Lo.r, :=1,T'(0) whereI'(0) is the K x K covariance matrix of the
stationary solufion of the autoregressive equation
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Configuity

Denote by P(™ and Q™ two sequences of probability measures
over (XM, A)

Definition: Q") is contiguous to P(™ (notation: Q™ < P) if, for
all A™ e A, p[AM)] — 0 implies QU [AM] — 0

Conftiguity thus is a form of asymptotic absolute continuity of the
sequence Q" wrt the sequence P™)
Remarks:
* whenever Q™ g P and P < Q™, we say that P(®) and
Q™ are mutually contiguous (notation: P pq Q™).

* If QM < PM, S, = opwm (hy,) implies that S,, = ogm) (hy)



Conftiguity is also a form of asymptotic non-distinguishability:

consider a sequence of nonrandomized tests with critical region
A for the testing problem

{ HY (P}
H QM)

If P(™) pq Q) then
(@) PM[AM] = 0 = QM [AM] — 0: if the probability level
tends to 0, so does the power
) QMAM] — 1 = PM[AM] — 1. if the power tends to 1,
so does type | risk



Le Cam’s first Lemma

A famous sufficient condition for Q™ < P(™) is given by the
so-called Le Cam first Lemma:

Lemma (Hajek and Siddk): Let F, (z) := PM[49 " < 4], I F,
converges weakly to F, where [ xdF(z) = 1, then Q) < P(")

If moreover F(0) = 0, then P("™) g Q)

Application to LAN families (P = P{™ and Q™ = P )

O0+v, T
(n)
dP A r
under P\, Zotvnr — oheruirie 5 oZ where Z ~ N( — Lr'Tor, 7'Tor
7] dPén) 2 ?
ap{™

hence, F,(z) := P{" 2mr < a] converges fo F(x) = Ple” < ] Va
6



But for X ~ N(u,0%), E

/xdF(:c) — |

eX] = etz 5o that

1 1
eZ] —exp | — 57"1‘97' + 57"1‘97] = 1.

Le Cam’s first Lemma thus implies that P{", < Py,

Since moreover F(0) =

O0+v, 1T

PleZ < 0] = 0, we have that P} s P}

O0+v, T

for all 7: locc

More generally, PY" v Py

O0+v,, 17,
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Le Cam’s Third Lemma

Configuity is essentially about convergence in probability; under
similar conditions, can we also say something about
convergence in distribution?

The following result answers that question

Lemma (Hdjek and Sidak): Denote by A,, a version of log jgf:))

and let S(™) be A -mesurable. Assume that, under P, as
n — oo,
() =x(( ) (2 %2)
A(n) —%dQ 012 d?
Then,

M) P pa Q)
(i) under QM™, asn — oo, S™ 5 N (1 + 012, 02)



Application to LAN families

Applying the Lemma to the central sequence of a LAN model,

we readily obtain that, under P4

Otv, T as n — oo,

n) L
Aé;} —— N (To;s7, To;5)



Thus, under Pg'fym

A A
where A is the (unigue) observation in the Gaussian shift model
Ep = (R™  BX N (To.s7, To.p) | T € RF)
The relation between the local experiments

ge(n) - (X(n)’ _A(n)’ {ng_)vnq_ | T € RK})

(parameter: ) and the Gaussian shift £y (parameter: ) actually is
much stronger and essential: as we shall see now, Sé”“) converges

(in a sense To be defined) to &
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Convergence of stafistical experiments

Consider a statistical experiment £ := (X, A, P = {Pfg\)}) indexed
by 0. A staftistical procedure p (with value in a decision space D)
and a loss function W define a risk function 8 — Ry, (6)

Denote by R(P, D, W) the set of all risk functions that can be
iImplemented from the family of disfributions P with D-valued
staftistical procedures and the loss function W. More precisely, let

R(P,D,W) = {r :R* — R |3psuch that R, (0) < r(0) v6}
and denote by R(P, D, W) the pointwise closure of R(P,D, W):

R(P,D,W):={r: RF—= R |V0, r(0)=1lim r;(8) for some sequence r; c R(P, D, W)

1— 00



The Le Cam distance

Consider two statistical experiment, & := (X1, A1, Py = {P{4})
and & := (Xs, Az, Py = {P%}), indexed by the same parameter

Definition 1. The deficiency §(&1, ;) of £ with respect to & is
§(€1,&) == inf {e € [0,1] |VD, VW : R® — [0,1],Vry € R(P2, D, W)

371 € R(P1,D, W) : r1(0) <ry() + € V0 € R* }

Definition 2. The Le Cam disfance a (&1, &) between & and &, is

A(E1,E) := max (0(&1,E3), 0(E2,E1))

Interpretation: all risks functions 8 — (@) that can be achieved
via &; also can be achieved, within +a, via &



Weak convergence of experiments

The Le Cam distance naturally induces a concept of
convergence for sequences of experiments. Uniform (in 6)
convergence however would be too demanding; the following
convergence is uniform over all risk functions, but pointwise in 6:

Definition 3. A sequence of experiments

EM = (XM A P = [PM}) (allindexed by the same
parameter @) converges wedakly to the (limit-experiment)

E:= (X, A, P={Pg})if, foralmeNandal &, :={04,...,0,,}. the
subexperiments 5((;‘)) = (XW,A("),P&) = {P(?),z’ =1,...,m}) and
o, = (X, A, Pg, :=1{Pg.,i =1,...,m}) are such that

lim A(é’gz), Ee,) =0
Interpretation: the set of all risks functions 8 — () that can be
achieved in the limit experiment £ is the the “uniform pointwise”
limit of those that can be achieved in &™)



Le Cam’s weak convergence theorem

This definifion of weak convergence looks quite formidable and,
at first sight, completely inapplicable

The following result shows that this is not the case. Associated
with the experiment € := (X, A, P := {Pg | 6 € RE}), define the
log-likelihnood process

{A(s,t) :=log(dPs/dPy) | s,t € R }.

Similarly, associated with the sequence
g .= (xm), A pm) .— (P | g € REY), s

{A(”)(s,t) — log(dP™ /dP{™) | s,t € RK}

Le Cam (1969) then proved the following very simple necessary
and sufficient condition for weak convergence of £ to &



Le Cam’s weak convergence theorem

Theorem. (Le Cam 1969) The sequence of experiments £(")
converges weakly to € iff for allt € R*, the finite-dimensional

vectors of £ ‘s log-likelihood process converge in distribution to
fhe corresponding ones for £, namely, iff

( A(n)(slvt) \ ( A(Sl,t) \
vVJ €N, Vsq,...,s5, Vt 3 £ :

\A(n)(SJ,t> ) \A(SJ,t) )

underP{™, asn — oo



LAN: convergence of local experiments

This theorem is tfaylor-made for local experiments under LAN.
Indeed, denoting by A(™ (s, t) the log-likelihood processes
associated with the sequence of local experiments at

(s, t here stand for values of the local parameter ), under
ng—)v(n)t’ as n — 0o,

[ A®)(sy,t) ) [ A (s;,0) — A (t,0)

\ A (ss.t) ) \ A (s;,0) — AM(t,0) )

[ (s —t>'\ (s1-)\  [(s1+t))

\(ss —t)') \(s;—t))  \(ss+t))

+ op(1)



Similarly, denoting by A(s, t) the log-likelihood processes
associated with the Gaussian shift experiment A ~ N (Tg7, Ty),
T € RE, we obtain (exactly so)

( A<Slv t) \

\ A(Sj,t) )

((Sl — )"

\ss -t

[ A(s;,0) — A(t,0) )

\ A(ss,0) — A(t,0) )

Al
2

((Sl — )"

(55—

[(s1+t)")

\(SJ —I—t)/)

Convergence of the local experiments fo the Gaussian shift thus

readily follows from the convergence in law, under any p{m)

of AYY to A

0-+v(n)t’



Locally and asymptotically, thus,

the risk functions (in the vicinity of ) of the original
experiment are those of the Gaussian shifts A ~ A (Tg7, Ty);
locally, the “asymptoftically optimal” risk functions in the
original experiment thus are the (exactly) optimal risk
functions of the corresponding Gaussian shiffs—which are
well known

moreover, since Af,”) converges in law to A, those risk
functions are achieved by treating the central sequence
Aé”) the way one would treat A in the Gaussian shift
(bounded loss functions: Helly-Bray applies)

for instance, if a fest ¢(A) is exactly most powerful at level «
in the Gaussian shift, the sequence of tests gb(Aé”)) will be
locally (at ) and asymptotically most powerful (at
asymptotic level o) in tThe original experiment
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Locally asympftofically maximin tests
Consider the problem of testing #™) : 8 = 6, against K : 6 +£ 6,

* |ocal version (in the vicinity of 8, in ferms of the local
parameter 7): H™ . 7 =0 against £ : 7 #£0

* inthe Gaussian shift: 7™ : A ~ N(0, T'y) against
KM A~ N(p#0, Tp)

* optimal (maximin at level «) test in the Gaussian shift: reject
H!") whenever AT, A exceeds the (1 — a)-quantile x3_ .,
of the chi-square distribution with K d.f.

* locally asymptoftically optimal (locally asymptotically
maximin, at asymptoftic level «) test (in the original
experiment): reject (") whenever ATy, A" exceeds
the (1 — a)-quantile x7_,.; of the chi-squaredistribution with
K d.f.



maximinity
the adequate concept of optimality here is maximinity (Wald
1943)

consider testing ‘H against £C; let C be some class of testfs
for all ¢ € C, the “worst performance” against I is infpcxc Ep|[¢)]

call ¢* maximin for ‘H against K within C if
°* 9ot el
® infpex Ep|¢*] > infpex Ep|¢] forall¢ € C
In the Gaussian shift experiment A ~ N (u, I'), the maximin test

for’ H : u =0 against K : u # 0 within the class C of a-level fests is
frivially ¢* = «

therefore, the classical optimality concept for this testing
problem is the maximin test for H : p = 0 against

Ke:= {p:| T 'p> c} within the class C of a-level tests;
irespective of ¢ > 0, the solution is ¢* = I[AT™'A > x%,_ ]



Local powers

power af T #£ 0 of the a-level maximin ftest in the Gaussian
shift: 1 — FXi (x2_, ;7' Te,T), Wwhere FXk (. ;\?) denotes the
distribution function of a noncentral chi-square distribution
with K d.F., and noncentrality parameter \?

local asymptotic power (in the original experiment) at

Péﬁlu(n),r of the locally asymptotically maximin tfest: SAME



festing “subhypoftheses”

Split § into (07,6.), 0, € RE1, 0, ¢ RE2 (K| + Ky = K), and
consider the problem of testing (") : 6, = 0,.0 against
KK 0, +# 61,0, with 8, playing the role of a nuisance. Partition r

P0;11 P0;12 )

and Ty similarly info 7 =: (7, 75) and T’y = ( ,
I‘49;12 Lo;20

* local version (in the vicinity of (67.4,865)’. in terms of the local
parameter 7): H™ . 1 = (0, 7})’
against W) . 7 = (1) £ 0/, 7,)

® in the Gaussian shift;
H™ 2 A~ N (T, 0,0, 75), Lo g)), T2 Unspecified
against
K™ A~ N(Tg; 0,y (T1,75)'s Tigy 05)), T1 # 0, T2 Unspecified



stringency
the adequate concept of optimality is sfringency (Wald 1943)
consider testing ‘H against IC; let C be some class of tesfs
for all ¢ € C, define the “regret of ¢” within C :

r(¢) := sup {SUP Ep[¢'] — Ep W}

Pek | #cC

call ¢* most stringent for H against I within C if
© ¢9pr el
°* r(¢*) <r(¢)foralle eC



stringency in Gaussian shifts

INn the Gaussian shift model under which

I I T I I
A NN < /11 12 ) 1 7 < ,11 12 > 7
P12 F22 To F12 F22

the most stringent a-level test of H : 71 = 0 against

IC: 11 # 0 Is obtained by considering the residual Af of
the regression of A; with respect to A, in the covariance

| I i
mMartrix sz, A, =A — I‘12I‘2_21A2;
I, T

elementary calculation shows that, irrespective of 7,

1

A, ~N(Tyym, Tyy)  with Ty =Ty — Tl T,

(another Gaussian shift, with information
I, <T,,—equality iff Ty, = 0)



the most stringent test then rejects H : 71 = 0 whenever
1 N1
A’ (I‘ll) A, exceeds x% .,_,

accordingly, the locally (at (6. 0 6,)") asymptotically most
stringent test for (") : 6, = 6,.,c against £ : 6, # 0,
consists in rejecting H(™) whenever

A(”)’ (I‘L ) A(”)L exceeds 2
0051 \ 1 (0,,05)511 0:03)'31 XKil-a

finally, replacing 6, with a v(n)-consistent estimate @;n) (.e.,
such that »=1(n) (8" — 8,) = Op(1) under Pl 5, CS

n — o0o) does not affect the asymptoftic distribution of Af. It
follows that the locally (at any (67.,,65)". 6, € R*2)
asymptotically most stringent test for #(") . 6, = 6,., against
K 0, +# 6. consists in rejecting H™) whenever

—1
1 1
AT | A AMT  exceeds \2 .
8y \ 7 (01,0.65")11 (6},0,65"" 51 XKiil-a
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estimation in the Gaussian shift model
optimal estimation of 7 in the Gaussian shiff model
A~NTrT) 1eRE

IS achieved through

iNn principle, thus, a locally asymptotically optfimal estimator
~(n

0 ) of 8 should achieve the same performance,
asymptotically, under Pg”’), Qs n — oo



one-step estimarors

Let 8™ be a sequence of v(n)-consistent (and v(n)discrete)
estimators of 8, i.e., v~ (n)(8") — 8) = O, (1)
6

define (the one-step estimator)

0" — 0™ 4 y(mrt AM

00 "™
* then,

A1)

v~ (n) 6 5"

—0) = vim)@  —6)+v ()OI 0)
= TyA + v (0)(6 )

But (ULAN) A(gzz) — A{Y—Tov1(n)(6—0) + opc (1); hence,

~0) =T,

2o | A= Tov=Y(n) (60— 0)| + v~ (n) (87 8)+0p(1)

— 1;'AY +op(1) =~ N(r, T;*! under P
0 0 0 0+v(n)T



Hajek convolution Theorem

the one-step estimator thus asymptotically achieves the
optimality result expected from the convergence to the
Gaussian shift

This optimality property, which could be explicitated in ferms of
convergence of risk functions, is substantiated by the elegant
Hdjek convolution Theorem

Theorem. (Hdjek 1970) Let T(™) be a RX -valued statistic (in a “lo-
cal” sense, i.e., it may depend on@, buf not ont) such thaf, under

P(n)

6.1 (n)r 1he distribution of T(") — 7 converges to some distribu-

fion H fthat does not depend on . Then, H is the distributfion of
r, 127 4 U, where Z ~ N (0,I), and Z and U are mutually inde-

pendent,



opfimality of one-step

The one-step estimator 9(n) just constructed

satisfies the condifion; more precisely, under Pé@u(n)T,
A1)

T™ :=v=1(n)(@ - 8) — 7 is asymptotically N'(0,T, ")

is (asymptotically) optimal in The sense that its asymptotic
distribution corresponds to the "most favorable
convolution” of a A(0,T, ') distribution with a Dirac at 0
(viz., U=0a.s.)
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