EcoSta 2019: Start Registration
View Submission - EcoSta2019
Title: Permutation tests for general dependent truncation Authors:  Sy Han Chiou - University of Texas at Dallas (United States) [presenting]
Jing Qian - University of Massachusetts Amherst (United States)
Elizabeth Mormino - Stanford University (United States)
Rebecca Betensky - Harvard School of Public Health (United States)
Abstract: Truncated survival data arise when the event time is observed only if it falls within a subject-specific region, known as the truncation set. Left-truncated data arise when there is delayed entry into a study, such that subjects are included only if their event time exceeds some other time. Quasi-independence of truncation and failure refers to factorization of their joint density in the observable region. Under quasi-independence, standard methods for survival data such as the Kaplan-Meier estimator and Cox regression can be applied after simple adjustments to the risk sets. Unlike the requisite assumption of independent censoring, quasi-independence can be tested, e.g., using a conditional Kendall's tau test. Current methods for testing for quasi-independence are powerful for monotone alternatives. Nonetheless, it is essential to detect any deviation from quasi-independence so as not to report a biased Kaplan-Meier estimator or regression effect, which would arise from applying the simple risk set adjustment when dependence holds. Nonparametric, minimum p-value tests that are powerful against non-monotone alternatives are developed to offer protection against erroneous assumptions of quasi-independence. The use of conditional and unconditional methods of permutation for evaluation of the proposed tests is investigated in simulation studies. The proposed tests are applied to a study on the cognitive and functional decline in aging.