EcoSta 2019: Start Registration
View Submission - EcoSta2019
A0349
Title: Weighted batch means estimators in Markov chain Monte Carlo Authors:  James Flegal - University of California - Riverside (United States) [presenting]
Abstract: A family of weighted batch means variance estimators is proposed, which are computationally efficient and can be conveniently applied in practice. The focus is on Markov chain Monte Carlo simulations and estimation of the asymptotic covariance matrix in the Markov chain central limit theorem, where conditions ensuring strong consistency are provided. Finite sample performance is evaluated through auto-regressive, Bayesian spatial-temporal, and Bayesian logistic regression examples, where the new estimators show significant computational gains with a minor sacrifice in variance compared with existing methods.