EcoSta 2018: Registration
View Submission - EcoSta2018
Title: A higher-order interactive hidden Markov model and its applications Authors:  Wai-Ki Ching - The University of Hong Kong (Hong Kong) [presenting]
Abstract: A higher-order Interactive Hidden Markov Model(IHMM) is proposed, which incorporates both the feedback effects of observable states on hidden states and their mutual long-term dependence. The key idea of this model is to assume the probability laws governing both the observable and hidden states can be written as a pair of high-order stochastic difference equations. We also present an efficient procedure, a heuristic algorithm, to estimate the hidden states of the chain and the model parameters. Real applications in SSE Composite Index data and default data are given to demonstrate the effectiveness of our proposed model and corresponding estimation method.