CMStatistics 2022: Start Registration
View Submission - CMStatistics
Title: Network regression with graph Laplacians Authors:  Yidong Zhou - University of California, Davis (United States) [presenting]
Hans-Georg Mueller - University of California Davis (United States)
Abstract: Network data are increasingly available in various research fields, motivating statistical analysis for populations of networks where a network as a whole is viewed as a data point. Due to the non-Euclidean nature of networks, basic statistical tools available for scalar and vector data are no longer applicable when one aims to relate networks as outcomes to Euclidean covariates, while the study of how a network changes in dependence on covariates is often of paramount interest. This motivates us to extend the notion of regression to the case of responses that are network data. We propose to adopt conditional Fr\'{e}chet means implemented with both global least squares regression and local weighted least squares smoothing, extending the Fr\'{e}chet regression concept to networks that are quantified by their graph Laplacians. The challenge is to characterize the space of graph Laplacians so as to justify the application of Fr\'{e}chet regression. This characterization then leads to asymptotic rates of convergence for the corresponding M-estimators by applying empirical process methods. We demonstrate the usefulness and good practical performance of the proposed framework with simulations and with network data arising from resting-state fMRI in neuroimaging, as well as New York taxi records.