CMStatistics 2022: Start Registration
View Submission - CMStatistics
Title: A functional model for studying common trends across trial time in eye-tracking experiments Authors:  Damla Senturk - University of California Los Angeles (United States) [presenting]
Donatello Telesca - UCLA (United States)
Catherine Sugar - UCLA (United States)
Mingfei Dong - UCLA (United States)
Abstract: Eye-tracking (ET) experiments commonly record the continuous trajectory of a subject's gaze on a two-dimensional screen throughout repeated presentations of stimuli (referred to as trials). Even though the continuous path of gaze is recorded during each trial, commonly derived outcomes for analysis collapse the data into simple summaries, such as looking times in regions of interest, latency to looking at stimuli, number of stimuli viewed, number of fixations or fixation length. In order to retain information in trial time, we utilize functional data analysis (FDA) for the first time in literature in the analysis of ET data. More specifically, novel functional outcomes for ET data, referred to as viewing profiles, are introduced that capture the common gazing trends across trial time which are lost in traditional data summaries. The mean and variation of the proposed functional outcomes across subjects are then modeled using functional principal components analysis. Applications to data from a visual exploration paradigm conducted by the Autism Biomarkers Consortium for Clinical Trials showcase the novel insights gained from the proposed FDA approach, including significant group differences between children diagnosed with autism and their typically developing peers in their consistency of looking at faces early on in trial time.