CMStatistics 2020: Start Registration
View Submission - CFE
A0984
Title: High-frequency realized stochastic volatility model Authors:  Toshiaki Watanabe - Hitotsubashi University (Japan) [presenting]
Jouchi Nakajima - Bank of Japan (Japan)
Abstract: A new high-frequency realized stochastic volatility model is proposed. Apart from the standard daily-frequency stochastic volatility model, the high-frequency stochastic volatility model is fit to intraday returns by extensively incorporating intraday volatility patterns. The daily realized volatility calculated using intraday returns is incorporated into the high-frequency stochastic volatility model by taking account of the bias in the daily realized volatility caused by microstructure noise. The volatility of intraday returns is assumed to consist of the autoregressive process, the seasonal component of the intraday volatility pattern, and the announcement component responding to macroeconomic announcements. A Bayesian method via Markov chain Monte Carlo is developed for the analysis of the proposed model. The empirical analysis using the 5-minute returns of Nikkei 225 index provides evidence that our high-frequency realized stochastic volatility model improves in-sample model fit and volatility forecasting over the existing models.