CMStatistics 2020: Start Registration
View Submission - CMStatistics
Title: Efron-Petrosian integrals for doubly truncated data with covariates: An asymptotic analysis Authors:  Jacobo de Una-Alvarez - University of Vigo (Spain) [presenting]
Ingrid Van Keilegom - KU Leuven (Belgium)
Abstract: In survival analysis, epidemiology and related fields, there exists an increasing interest in statistical methods for doubly truncated data. Double truncation appears with interval sampling and other sampling schemes and refers to situations in which the target variable is subject to two (left and right) random observation limits. Doubly truncated data require specific corrections for the observational bias, and this affects a variety of settings, including the estimation of marginal and multivariate distributions, regression problems, and multi-state models. Multivariate Efron-Petrosian integrals for doubly truncated data are introduced. These integrals naturally arise when the goal is the estimation of the mean of a general transformation which involves the doubly truncated variable and covariates. An asymptotic representation of the Efron-Petrosian integrals as a sum of iid terms is derived and, from this, consistency and distributional convergence are established. As a by-product, uniform iid representations for the marginal nonparametric maximum likelihood estimator and its corresponding weighting process are provided. Applications to correlation analysis, regression, and competing risks models are presented. A simulation study is reported too.